Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Laval University, Quebec City, QC, Canada G1J 2G3.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19250-5. doi: 10.1073/pnas.1217990109. Epub 2012 Nov 7.
Mammalian voltage-gated sodium channels are composed of four homologous voltage sensor domains (VSDs; DI, DII, DIII, and DIV) in which their S4 segments contain a variable number of positively charged residues. We used single histidine (H) substitutions of these charged residues in the Na(v)1.4 channel to probe the positions of the S4 segments at hyperpolarized potentials. The substitutions led to the formation of gating pores that were detected as proton leak currents through the VSDs. The leak currents indicated that the mutated residues are accessible from both sides of the membrane. Leak currents of different magnitudes appeared in the DI/R1H, DII/R1H, and DIII/R2H mutants, suggesting that the resting state position of S4 varies depending on the domain. Here, DI/R1H indicates the first arginine R1, in domain DI, has been mutated to histidine. The single R1H, R2H, and R3H mutations in DIV did not produce appreciable proton currents, indicating that the VSDs had different topologies. A structural model of the resting states of the four VSDs of Na(v)1.4 relaxed in their membrane/solution environment using molecular dynamics simulations is proposed based on the recent Na(v)Ab sodium channel X-ray structure. The model shows that the hydrophobic septa that isolate the intracellular and the extracellular media within the DI, DII, and DIII VSDs are ∼2 Å long, similar to those of K(v) channels. However, the septum of DIV is longer, which prevents water molecules from hydrating the center of the VSD, thus breaking the proton conduction pathway. This structural model rationalizes the activation sequence of the different VSDs of the Na(v)1.4 channel.
哺乳动物电压门控钠离子通道由四个同源的电压传感器结构域(VSD;DI、DII、DIII 和 DIV)组成,其中 S4 片段含有可变数量的带正电荷的残基。我们使用这些带电荷的残基在 Na(v)1.4 通道中的单个组氨酸(H)取代来探测 S4 片段在超极化电位下的位置。这些取代导致门控孔的形成,这些孔被检测为通过 VSD 的质子泄漏电流。泄漏电流表明突变残基可从膜的两侧进入。DI/R1H、DII/R1H 和 DIII/R2H 突变体中出现了不同幅度的泄漏电流,表明 S4 的静止状态位置取决于结构域。这里,DI/R1H 表示 DI 结构域中的第一个精氨酸 R1 已突变为组氨酸。DIV 中的单个 R1H、R2H 和 R3H 突变没有产生可观的质子电流,表明 VSD 具有不同的拓扑结构。根据最近的 Na(v)Ab 钠通道 X 射线结构,提出了一个使用分子动力学模拟放松在其膜/溶液环境中的 Na(v)1.4 的四个 VSD 静止状态的结构模型。该模型表明,在 DI、DII 和 DIII VSD 内隔离细胞内和细胞外介质的疏水区段约为 2 Å,与 K(v)通道相似。然而,DIV 的隔室更长,这阻止水分子水合 VSD 的中心,从而破坏质子传导途径。这种结构模型合理化了 Na(v)1.4 通道不同 VSD 的激活序列。