Suppr超能文献

门控通道电流和 Nav1.4 电压传感器结构域的静息状态。

Gating pore currents and the resting state of Nav1.4 voltage sensor domains.

机构信息

Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Laval University, Quebec City, QC, Canada G1J 2G3.

出版信息

Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19250-5. doi: 10.1073/pnas.1217990109. Epub 2012 Nov 7.

Abstract

Mammalian voltage-gated sodium channels are composed of four homologous voltage sensor domains (VSDs; DI, DII, DIII, and DIV) in which their S4 segments contain a variable number of positively charged residues. We used single histidine (H) substitutions of these charged residues in the Na(v)1.4 channel to probe the positions of the S4 segments at hyperpolarized potentials. The substitutions led to the formation of gating pores that were detected as proton leak currents through the VSDs. The leak currents indicated that the mutated residues are accessible from both sides of the membrane. Leak currents of different magnitudes appeared in the DI/R1H, DII/R1H, and DIII/R2H mutants, suggesting that the resting state position of S4 varies depending on the domain. Here, DI/R1H indicates the first arginine R1, in domain DI, has been mutated to histidine. The single R1H, R2H, and R3H mutations in DIV did not produce appreciable proton currents, indicating that the VSDs had different topologies. A structural model of the resting states of the four VSDs of Na(v)1.4 relaxed in their membrane/solution environment using molecular dynamics simulations is proposed based on the recent Na(v)Ab sodium channel X-ray structure. The model shows that the hydrophobic septa that isolate the intracellular and the extracellular media within the DI, DII, and DIII VSDs are ∼2 Å long, similar to those of K(v) channels. However, the septum of DIV is longer, which prevents water molecules from hydrating the center of the VSD, thus breaking the proton conduction pathway. This structural model rationalizes the activation sequence of the different VSDs of the Na(v)1.4 channel.

摘要

哺乳动物电压门控钠离子通道由四个同源的电压传感器结构域(VSD;DI、DII、DIII 和 DIV)组成,其中 S4 片段含有可变数量的带正电荷的残基。我们使用这些带电荷的残基在 Na(v)1.4 通道中的单个组氨酸(H)取代来探测 S4 片段在超极化电位下的位置。这些取代导致门控孔的形成,这些孔被检测为通过 VSD 的质子泄漏电流。泄漏电流表明突变残基可从膜的两侧进入。DI/R1H、DII/R1H 和 DIII/R2H 突变体中出现了不同幅度的泄漏电流,表明 S4 的静止状态位置取决于结构域。这里,DI/R1H 表示 DI 结构域中的第一个精氨酸 R1 已突变为组氨酸。DIV 中的单个 R1H、R2H 和 R3H 突变没有产生可观的质子电流,表明 VSD 具有不同的拓扑结构。根据最近的 Na(v)Ab 钠通道 X 射线结构,提出了一个使用分子动力学模拟放松在其膜/溶液环境中的 Na(v)1.4 的四个 VSD 静止状态的结构模型。该模型表明,在 DI、DII 和 DIII VSD 内隔离细胞内和细胞外介质的疏水区段约为 2 Å,与 K(v)通道相似。然而,DIV 的隔室更长,这阻止水分子水合 VSD 的中心,从而破坏质子传导途径。这种结构模型合理化了 Na(v)1.4 通道不同 VSD 的激活序列。

相似文献

1
Gating pore currents and the resting state of Nav1.4 voltage sensor domains.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19250-5. doi: 10.1073/pnas.1217990109. Epub 2012 Nov 7.
3
Regulation of Na channel inactivation by the DIII and DIV voltage-sensing domains.
J Gen Physiol. 2017 Mar 6;149(3):389-403. doi: 10.1085/jgp.201611678. Epub 2017 Feb 23.
5
Voltage-sensor movements describe slow inactivation of voltage-gated sodium channels I: wild-type skeletal muscle Na(V)1.4.
J Gen Physiol. 2013 Mar;141(3):309-21. doi: 10.1085/jgp.201210909. Epub 2013 Feb 11.
6
Structural basis for gating pore current in periodic paralysis.
Nature. 2018 May;557(7706):590-594. doi: 10.1038/s41586-018-0120-4. Epub 2018 May 16.
7
Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
J Physiol. 2007 Jul 1;582(Pt 1):317-34. doi: 10.1113/jphysiol.2007.134262. Epub 2007 May 17.
8
Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing.
J Membr Biol. 2004 Sep 1;201(1):9-24. doi: 10.1007/s00232-004-0701-z.
10
Spider toxin inhibits gating pore currents underlying periodic paralysis.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4495-4500. doi: 10.1073/pnas.1720185115. Epub 2018 Apr 10.

引用本文的文献

2
Understanding the role of mutations in voltage-gated sodium ion channels for cardiovascular disorders.
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202413744. Epub 2025 Jan 23.
3
The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels.
J Gen Physiol. 2025 Mar 3;157(2). doi: 10.1085/jgp.202413669. Epub 2025 Jan 17.
4
5
Mapping structural distribution and gating-property impacts of disease-associated mutations in voltage-gated sodium channels.
iScience. 2024 Aug 23;27(9):110678. doi: 10.1016/j.isci.2024.110678. eCollection 2024 Sep 20.
6
Pathogenic gating pore current conducted by autism-related mutations in the Na1.2 brain sodium channel.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2317769121. doi: 10.1073/pnas.2317769121. Epub 2024 Apr 2.
7
Anionic omega currents from single countercharge mutants in the voltage-sensing domain of Ci-VSP.
J Gen Physiol. 2024 Jan 1;156(1). doi: 10.1085/jgp.202213311. Epub 2023 Nov 29.
8
Ion currents through the voltage sensor domain of distinct families of proteins.
J Biol Phys. 2023 Dec;49(4):393-413. doi: 10.1007/s10867-023-09645-z. Epub 2023 Oct 18.
9
Fifty years of gating currents and channel gating.
J Gen Physiol. 2023 Aug 7;155(8). doi: 10.1085/jgp.202313380. Epub 2023 Jul 6.
10
Optical measurement of gating pore currents in hypokalemic periodic paralysis model cells.
Dis Model Mech. 2023 Jun 1;16(6). doi: 10.1242/dmm.049704. Epub 2023 Jun 27.

本文引用的文献

1
Pathophysiological role of omega pore current in channelopathies.
Front Pharmacol. 2012 Jun 11;3:112. doi: 10.3389/fphar.2012.00112. eCollection 2012.
2
Crystal structure of a voltage-gated sodium channel in two potentially inactivated states.
Nature. 2012 May 20;486(7401):135-9. doi: 10.1038/nature11077.
3
Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel.
Nature. 2012 May 20;486(7401):130-4. doi: 10.1038/nature11054.
5
Architecture and pore block of eukaryotic voltage-gated sodium channels in view of NavAb bacterial sodium channel structure.
Mol Pharmacol. 2012 Jul;82(1):97-104. doi: 10.1124/mol.112.078212. Epub 2012 Apr 13.
6
Mechanism of voltage gating in potassium channels.
Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.
7
Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains.
Biophys J. 2012 Jan 18;102(2):258-67. doi: 10.1016/j.bpj.2011.10.057.
8
Gating transitions in the selectivity filter region of a sodium channel are coupled to the domain IV voltage sensor.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2648-53. doi: 10.1073/pnas.1210413109. Epub 2012 Jan 30.
9
Structural basis for gating charge movement in the voltage sensor of a sodium channel.
Proc Natl Acad Sci U S A. 2012 Jan 10;109(2):E93-102. doi: 10.1073/pnas.1118434109. Epub 2011 Dec 12.
10
On the recombination of hydronium and hydroxide ions in water.
Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20410-5. doi: 10.1073/pnas.1112486108. Epub 2011 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验