Suppr超能文献

Kv1.2 电压传感器域中 ω 电流的分子动力学研究。

Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains.

机构信息

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Biophys J. 2012 Jan 18;102(2):258-67. doi: 10.1016/j.bpj.2011.10.057.

Abstract

Voltage sensor domains (VSD) are transmembrane proteins that respond to changes in membrane voltage and modulate the activity of ion channels, enzymes, or in the case of proton channels allow permeation of protons across the cell membrane. VSDs consist of four transmembrane segments, S1-S4, forming an antiparallel helical bundle. The S4 segment contains several positively charged residues, mainly arginines, located at every third position along the helix. In the voltage-gated Shaker K(+) channel, the mutation of the first arginine of S4 to a smaller uncharged amino acid allows permeation of cations through the VSD. These currents, known as ω-currents, pass through the VSD and are distinct from K(+) currents passing through the main ion conduction pore. Here we report molecular dynamics simulations of the ω-current in the resting-state conformation for Kv1.2 and for four of its mutants. The four tested mutants exhibit various degrees of conductivity for K(+) and Cl(-) ions, with a slight selectivity for K(+) over Cl(-). Analysis of the ion permeation pathway, in the case of a highly conductive mutant, reveals a negatively charged constriction region near the center of the membrane that might act as a selectivity filter to prevent permeation of anions through the pore. The residues R1 in S4 and E1 in S2 are located at the narrowest region of the ω-pore for the resting state conformation of the VSD, in agreement with experiments showing that the largest increase in current is produced by the double mutation E1D and R1S.

摘要

电压传感器结构域(VSD)是一种跨膜蛋白,可响应膜电压变化并调节离子通道、酶的活性,或者在质子通道的情况下允许质子穿过细胞膜。VSD 由四个跨膜片段 S1-S4 组成,形成反平行的螺旋束。S4 片段包含几个带正电荷的残基,主要是精氨酸,位于螺旋的每第三个位置。在电压门控 Shaker K(+)通道中,S4 的第一个精氨酸突变为较小的不带电荷的氨基酸,允许阳离子通过 VSD 渗透。这些电流称为 ω 电流,通过 VSD 传递,与通过主要离子传导孔传递的 K(+)电流不同。在这里,我们报告了 Kv1.2 及其四个突变体在静息构象下 ω 电流的分子动力学模拟。四个测试的突变体对 K(+)和 Cl(-)离子表现出不同程度的导电性,对 K(+)有轻微的选择性。对高度导电突变体的离子渗透途径的分析表明,在膜的中心附近存在一个带负电荷的收缩区域,该区域可能作为选择性过滤器,防止阴离子通过孔渗透。S4 中的残基 R1 和 S2 中的残基 E1 位于 VSD 静息构象下 ω 孔的最窄区域,这与实验结果一致,实验表明电流的最大增加是由 E1D 和 R1S 的双重突变产生的。

相似文献

1
Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains.
Biophys J. 2012 Jan 18;102(2):258-67. doi: 10.1016/j.bpj.2011.10.057.
3
Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel.
Biophys J. 2010 May 19;98(10):2189-98. doi: 10.1016/j.bpj.2010.02.056.
4
Gating pore currents and the resting state of Nav1.4 voltage sensor domains.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19250-5. doi: 10.1073/pnas.1217990109. Epub 2012 Nov 7.
6
Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel.
J Physiol. 2018 Jun;596(12):2413-2432. doi: 10.1113/JP274124. Epub 2018 Apr 25.
7
The twisted ion-permeation pathway of a resting voltage-sensing domain.
Nature. 2007 Feb 1;445(7127):546-9. doi: 10.1038/nature05396. Epub 2006 Dec 24.
8
Molecular mechanism for depolarization-induced modulation of Kv channel closure.
J Gen Physiol. 2012 Nov;140(5):481-93. doi: 10.1085/jgp.201210817. Epub 2012 Oct 15.
9
Dynamics of the Kv1.2 voltage-gated K+ channel in a membrane environment.
Biophys J. 2007 Nov 1;93(9):3070-82. doi: 10.1529/biophysj.107.112540. Epub 2007 Aug 17.
10
Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K Ion Channel.
J Phys Chem B. 2017 Apr 20;121(15):3804-3812. doi: 10.1021/acs.jpcb.6b12639. Epub 2017 Jan 25.

引用本文的文献

1
Computational Models of Claudin Assembly in Tight Junctions and Strand Properties.
Int J Mol Sci. 2024 Mar 16;25(6):3364. doi: 10.3390/ijms25063364.
2
Anionic omega currents from single countercharge mutants in the voltage-sensing domain of Ci-VSP.
J Gen Physiol. 2024 Jan 1;156(1). doi: 10.1085/jgp.202213311. Epub 2023 Nov 29.
3
Computational Assessment of Different Structural Models for Claudin-5 Complexes in Blood-Brain Barrier Tight Junctions.
ACS Chem Neurosci. 2022 Jul 20;13(14):2140-2153. doi: 10.1021/acschemneuro.2c00139. Epub 2022 Jul 11.
5
Structural Mechanism of ω-Currents in a Mutated Kv7.2 Voltage Sensor Domain from Molecular Dynamics Simulations.
J Chem Inf Model. 2021 Mar 22;61(3):1354-1367. doi: 10.1021/acs.jcim.0c01407. Epub 2021 Feb 11.
6
Simulation of Gating Currents of the Shaker K Channel Using a Brownian Model of the Voltage Sensor.
Biophys J. 2019 Nov 19;117(10):2005-2019. doi: 10.1016/j.bpj.2019.09.039. Epub 2019 Oct 8.
7
A New Cardiac Channelopathy: From Clinical Phenotypes to Molecular Mechanisms Associated With Na1.5 Gating Pores.
Front Cardiovasc Med. 2018 Oct 9;5:139. doi: 10.3389/fcvm.2018.00139. eCollection 2018.
8
Gating of Connexin Channels by transjunctional-voltage: Conformations and models of open and closed states.
Biochim Biophys Acta Biomembr. 2018 Jan;1860(1):22-39. doi: 10.1016/j.bbamem.2017.04.028. Epub 2017 May 2.
9
Atomistic Modeling of Ion Conduction through the Voltage-Sensing Domain of the Shaker K Ion Channel.
J Phys Chem B. 2017 Apr 20;121(15):3804-3812. doi: 10.1021/acs.jpcb.6b12639. Epub 2017 Jan 25.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
In search of a consensus model of the resting state of a voltage-sensing domain.
Neuron. 2011 Dec 8;72(5):713-20. doi: 10.1016/j.neuron.2011.09.024.
4
Down-state model of the voltage-sensing domain of a potassium channel.
Biophys J. 2010 Jun 16;98(12):2857-66. doi: 10.1016/j.bpj.2010.03.031.
5
Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel.
Biophys J. 2010 May 19;98(10):2189-98. doi: 10.1016/j.bpj.2010.02.056.
6
A gating charge transfer center in voltage sensors.
Science. 2010 Apr 2;328(5974):67-73. doi: 10.1126/science.1185954.
7
Principles of conduction and hydrophobic gating in K+ channels.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5833-8. doi: 10.1073/pnas.0911691107. Epub 2010 Mar 15.
8
Double gaps along Shaker S4 demonstrate omega currents at three different closed states.
Channels (Austin). 2010 Mar-Apr;4(2):93-100. Epub 2010 Mar 17.
9
Sequential formation of ion pairs during activation of a sodium channel voltage sensor.
Proc Natl Acad Sci U S A. 2009 Dec 29;106(52):22498-503. doi: 10.1073/pnas.0912307106. Epub 2009 Dec 10.
10
Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
PLoS Comput Biol. 2009 Feb;5(2):e1000289. doi: 10.1371/journal.pcbi.1000289. Epub 2009 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验