Centre for Systems Biology, School of Informatics, University of Edinburgh, and Breakthrough Research Unit, IGMM, Western General Hospital, Edinburgh EH9 3JD, UK.
Eur J Pharm Sci. 2012 Jul 16;46(4):244-58. doi: 10.1016/j.ejps.2011.10.026. Epub 2011 Nov 9.
High levels of variability in cancer-related cellular signalling networks and a lack of parameter identifiability in large-scale network models hamper translation of the results of modelling studies into the process of anti-cancer drug development. Recently global sensitivity analysis (GSA) has been recognised as a useful technique, capable of addressing the uncertainty of the model parameters and generating valid predictions on parametric sensitivities. Here we propose a novel implementation of model-based GSA specially designed to explore how multi-parametric network perturbations affect signal propagation through cancer-related networks. We use area-under-the-curve for time course of changes in phosphorylation of proteins as a characteristic for sensitivity analysis and rank network parameters with regard to their impact on the level of key cancer-related outputs, separating strong inhibitory from stimulatory effects. This allows interpretation of the results in terms which can incorporate the effects of potential anti-cancer drugs on targets and the associated biological markers of cancer. To illustrate the method we applied it to an ErbB signalling network model and explored the sensitivity profile of its key model readout, phosphorylated Akt, in the absence and presence of the ErbB2 inhibitor pertuzumab. The method successfully identified the parameters associated with elevation or suppression of Akt phosphorylation in the ErbB2/3 network. From analysis and comparison of the sensitivity profiles of pAkt in the absence and presence of targeted drugs we derived predictions of drug targets, cancer-related biomarkers and generated hypotheses for combinatorial therapy. Several key predictions have been confirmed in experiments using human ovarian carcinoma cell lines. We also compared GSA-derived predictions with the results of local sensitivity analysis and discuss the applicability of both methods. We propose that the developed GSA procedure can serve as a refining tool in combinatorial anti-cancer drug discovery.
癌症相关细胞信号网络中的高度变异性以及大规模网络模型中参数可识别性的缺乏,阻碍了模型研究结果向抗癌药物开发过程的转化。最近,全局敏感性分析(GSA)已被认为是一种有用的技术,能够解决模型参数的不确定性,并对参数敏感性产生有效的预测。在这里,我们提出了一种新的基于模型的 GSA 实现方法,专门用于探索多参数网络扰动如何影响癌症相关网络中的信号传递。我们使用蛋白质磷酸化随时间变化的曲线下面积作为敏感性分析的特征,并根据它们对关键癌症相关输出水平的影响对网络参数进行排名,将强抑制作用与刺激作用分开。这允许根据可能的抗癌药物对靶点和癌症相关生物标志物的影响来解释结果。为了说明该方法,我们将其应用于 ErbB 信号网络模型,并在没有和存在 ErbB2 抑制剂 pertuzumab 的情况下,探索其关键模型输出物磷酸化 Akt 的敏感性分布。该方法成功地确定了与 ErbB2/3 网络中 Akt 磷酸化升高或降低相关的参数。从分析和比较无靶向药物和有靶向药物时 pAkt 的敏感性分布,我们得出了药物靶点、癌症相关生物标志物的预测,并提出了组合治疗的假设。在使用人卵巢癌细胞系的实验中,我们验证了几个关键预测。我们还将 GSA 衍生的预测结果与局部敏感性分析的结果进行了比较,并讨论了这两种方法的适用性。我们提出,开发的 GSA 程序可以作为组合抗癌药物发现的一种精炼工具。