Dang Linh C, O'Neil James P, Jagust William J
Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall #3190, Berkeley, CA 94720-3190, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road 55R0121, Berkeley, CA 94720-8119, USA.
Lawrence Berkeley National Laboratory, 1 Cyclotron Road 55R0121, Berkeley, CA 94720-8119, USA.
Neuroimage. 2013 Feb 1;66:203-14. doi: 10.1016/j.neuroimage.2012.10.090. Epub 2012 Nov 8.
Claims of gene-behavior associations are complex and sometimes difficult to replicate because these relationships involve many downstream endogenous and environmental processes that mediate genetic effects. Knowing these mediating processes is critical to understanding the links between genes and behavior and how these factors differ between people. We identified and characterized the effects of a gene on neurochemistry and neural networks to elucidate the mechanism, at the systems level, whereby genes influence cognition. Catechol-O-methyltransferase (COMT) degrades dopamine in the prefrontal cortex (PFC) and is polymorphic with alleles differing in enzymatic activity. We found that COMT genotype determined dopamine synthesis, such that individuals with greater COMT activity synthesized more dopamine. Dopamine synthesis in the midbrain and ventral striatum affected functional connectivity in the default mode network, likely through the mesocorticolimbic pathway, in an inverted-U pattern with greater functional connectivity in medial PFC associated with intermediate levels of COMT activity and dopamine. Greater functional connectivity correlated with greater deactivation during performance of a set-shifting task that engaged the PFC. Greater deactivation was in turn associated with better performance. The integration of these results yields a model whereby COMT affects prefrontal function by a mechanism involving dopaminergic modulation of the default mode network. The model features the well-known inverted-U function between dopamine and performance and supports the hypothesis that dopamine and the default mode network shift attentional resources to influence prefrontal cognition.
基因与行为关联的说法很复杂,有时难以重复验证,因为这些关系涉及许多介导遗传效应的下游内源性和环境过程。了解这些介导过程对于理解基因与行为之间的联系以及人与人之间这些因素的差异至关重要。我们确定并描述了一个基因对神经化学和神经网络的影响,以在系统层面阐明基因影响认知的机制。儿茶酚-O-甲基转移酶(COMT)在前额叶皮质(PFC)中降解多巴胺,并且具有酶活性不同的等位基因的多态性。我们发现COMT基因型决定多巴胺合成,即COMT活性较高的个体合成更多多巴胺。中脑和腹侧纹状体中的多巴胺合成影响默认模式网络中的功能连接,可能通过中脑皮质边缘通路,呈倒U形,内侧PFC中更高的功能连接与COMT活性和多巴胺的中间水平相关。更高的功能连接与涉及PFC的任务转换任务执行期间更大的失活相关。更大的失活反过来又与更好的表现相关。这些结果的整合产生了一个模型,即COMT通过涉及默认模式网络多巴胺能调节的机制影响前额叶功能。该模型具有多巴胺与表现之间众所周知的倒U形函数,并支持多巴胺和默认模式网络转移注意力资源以影响前额叶认知的假设。