Suppr超能文献

一种用于在原子尺度上绘制氢分布图的基于机器学习的框架。

A machine learning-based framework for mapping hydrogen at the atomic scale.

作者信息

Zhao Qingkun, Zhu Qi, Zhang Zhenghao, Yin Binglun, Gao Huajian, Zhou Haofei

机构信息

Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Center for X-mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China.

School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore.

出版信息

Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2410968121. doi: 10.1073/pnas.2410968121. Epub 2024 Sep 16.

Abstract

Hydrogen, the lightest and most abundant element in the universe, plays essential roles in a variety of clean energy technologies and industrial processes. For over a century, it has been known that hydrogen can significantly degrade the mechanical properties of materials, leading to issues like hydrogen embrittlement. A major challenge that has significantly limited scientific advances in this field is that light atoms like hydrogen are difficult to image, even with state-of-the-art microscopic techniques. To address this challenge, here, we introduce Atom-H, a versatile and generalizable machine learning-based framework for imaging hydrogen atoms at the atomic scale. Using a high-resolution electron microscope image as input, Atom-H accurately captures the distribution of hydrogen atoms and local stresses at lattice defects, including dislocations, grain boundaries, cracks, and phase boundaries. This provides atomic-scale insights into hydrogen-governed mechanical behaviors in metallic materials, including pure metals like Ni, Fe, Ti and alloys like FeCr. The proposed framework has an immediate impact on current research into hydrogen embrittlement and is expected to have far-reaching implications for mapping "invisible" atoms in other scientific disciplines.

摘要

氢是宇宙中最轻且最丰富的元素,在各种清洁能源技术和工业过程中发挥着重要作用。一个多世纪以来,人们已经知道氢会显著降低材料的机械性能,从而导致氢脆等问题。该领域科学进展受到重大限制的一个主要挑战是,即使使用最先进的微观技术,像氢这样的轻原子也很难成像。为应对这一挑战,在此我们引入Atom-H,这是一个基于机器学习的通用框架,用于在原子尺度上对氢原子进行成像。以高分辨率电子显微镜图像作为输入,Atom-H能够准确捕捉氢原子的分布以及晶格缺陷(包括位错、晶界、裂纹和相界)处的局部应力。这为金属材料(包括镍、铁、钛等纯金属以及铁铬合金等合金)中氢主导的力学行为提供了原子尺度的见解。所提出的框架对当前氢脆研究产生了直接影响,预计对其他科学学科中“不可见”原子的映射也将产生深远影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc79/11441556/63991c2f6adf/pnas.2410968121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验