抑素膜支架的丧失会损害线粒体的结构,导致过度磷酸化的 tau 蛋白积聚和神经退行性变。
Loss of prohibitin membrane scaffolds impairs mitochondrial architecture and leads to tau hyperphosphorylation and neurodegeneration.
机构信息
Institute for Genetics, University of Cologne, Cologne, Germany.
出版信息
PLoS Genet. 2012;8(11):e1003021. doi: 10.1371/journal.pgen.1003021. Epub 2012 Nov 8.
Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics.
线粒体的融合和裂变维持了线粒体的功能完整性并防止神经退行性变,但线粒体功能障碍如何引发神经元丢失仍不清楚。抑制素在内膜中形成由 PHB1 和 PHB2 亚基组成的大环复合物,被认为起膜支架的作用。在秀丽隐杆线虫中,抑制素基因通过调节脂肪代谢和能量产生来影响衰老。哺乳动物细胞中的敲低实验将抑制素的功能与膜融合联系起来,因为它们被发现稳定了类似于动力蛋白的 GTP 酶 OPA1(视神经萎缩 1),OPA1 介导线粒体内膜融合和嵴形态发生。OPA1 的突变与显性视神经萎缩有关,其特征是视网膜神经节细胞进行性丧失,突出了 OPA1 功能在神经元中的重要性。在这里,我们显示在小鼠前脑中神经元特异性敲除 Phb2 会导致广泛的神经退行性变,伴有行为障碍和认知缺陷。我们观察到海马中 tau 过度磷酸化和纤维形成的早期发作,证明了线粒体缺陷与 tau 病理学之间的直接联系。PHB2 的缺失会损害 OPA1 的稳定性,影响线粒体超微结构,并诱导海马神经元中线粒体的核周聚集。仅在老年神经元中才会出现线粒体基因组的不稳定性和呼吸缺陷,而在没有 PHB2 的情况下,线粒体形态缺陷的出现与 tau 过度磷酸化相关。这些结果确立了抑制素复合物在体内神经元存活中的重要作用,并证明了 OPA1 的稳定性、线粒体融合以及神经元中线粒体基因组的维持依赖于这些支架蛋白。此外,我们的发现确立了抑制素缺陷小鼠作为由线粒体功能障碍引起的 tau 病理学的新型遗传模型,并提出了 tau 病理学与由线粒体动力学缺陷引起的其他神经退行性疾病有关的可能性。
相似文献
J Cell Sci. 2009-11-1
Biochim Biophys Acta. 2009-1
Proc Natl Acad Sci U S A. 2023-3-21
Prog Retin Eye Res. 2021-7
Cell Death Differ. 2020-6
BMC Biochem. 2008-9-10
引用本文的文献
Open Life Sci. 2024-11-4
Aging (Albany NY). 2024-1-31
J Exp Clin Cancer Res. 2024-1-11
本文引用的文献
Cold Spring Harb Perspect Med. 2012-7
Neuron. 2011-6-23