MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France.
Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland.
Prog Retin Eye Res. 2021 Jul;83:100935. doi: 10.1016/j.preteyeres.2020.100935. Epub 2020 Dec 17.
Dominant optic atrophy (DOA) is an inherited mitochondrial disease leading to specific degeneration of retinal ganglion cells (RGCs), thus compromising transmission of visual information from the retina to the brain. Usually, DOA starts during childhood and evolves to poor vision or legal blindness, affecting the central vision, whilst sparing the peripheral visual field. In 20% of cases, DOA presents as syndromic disorder, with secondary symptoms affecting neuronal and muscular functions. Twenty years ago, we demonstrated that heterozygous mutations in OPA1 are the most frequent molecular cause of DOA. Since then, variants in additional genes, whose functions in many instances converge with those of OPA1, have been identified by next generation sequencing. OPA1 encodes a dynamin-related GTPase imported into mitochondria and located to the inner membrane and intermembrane space. The many OPA1 isoforms, resulting from alternative splicing of three exons, form complex homopolymers that structure mitochondrial cristae, and contribute to fusion of the outer membrane, thus shaping the whole mitochondrial network. Moreover, OPA1 is required for oxidative phosphorylation, maintenance of mitochondrial genome, calcium homeostasis and regulation of apoptosis, thus making OPA1 the Swiss army-knife of mitochondria. Understanding DOA pathophysiology requires the understanding of RGC peculiarities with respect to OPA1 functions. Besides the tremendous energy requirements of RGCs to relay visual information from the eye to the brain, these neurons present unique features related to their differential environments in the retina, and to the anatomical transition occurring at the lamina cribrosa, which parallel major adaptations of mitochondrial physiology and shape, in the pre- and post-laminar segments of the optic nerve. Three DOA mouse models, with different Opa1 mutations, have been generated to study intrinsic mechanisms responsible for RGC degeneration, and these have further revealed secondary symptoms related to mitochondrial dysfunctions, mirroring the more severe syndromic phenotypes seen in a subgroup of patients. Metabolomics analyses of cells, mouse organs and patient plasma mutated for OPA1 revealed new unexpected pathophysiological mechanisms related to mitochondrial dysfunction, and biomarkers correlated quantitatively to the severity of the disease. Here, we review and synthesize these data, and propose different approaches for embracing possible therapies to fulfil the unmet clinical needs of this disease, and provide hope to affected DOA patients.
原发性视神经萎缩(DOA)是一种遗传性线粒体疾病,导致视网膜神经节细胞(RGCs)的特定变性,从而损害视网膜向大脑传输视觉信息。通常,DOA 始于儿童时期,并发展为视力不佳或法定失明,影响中央视力,而保留周边视野。在 20%的病例中,DOA 表现为综合征障碍,伴有影响神经元和肌肉功能的继发性症状。二十年前,我们证明 OPA1 的杂合突变是 DOA 的最常见分子原因。从那时起,通过下一代测序已经鉴定出其他基因的变体,这些基因的功能在许多情况下与 OPA1 的功能相重叠。OPA1 编码一种进入线粒体的动粒相关 GTPase,位于内膜和膜间隙。通过三个外显子的选择性剪接产生的许多 OPA1 同工型形成复杂的同源聚合物,构建线粒体嵴,并有助于外膜融合,从而塑造整个线粒体网络。此外,OPA1 对于氧化磷酸化、线粒体基因组的维持、钙稳态和细胞凋亡的调节是必需的,因此 OPA1 是线粒体的瑞士军刀。理解 DOA 的病理生理学需要了解 RGC 相对于 OPA1 功能的特殊性。除了 RGC 将视觉信息从眼睛传递到大脑所需要的巨大能量外,这些神经元还具有与它们在视网膜中的不同环境以及在视盘发生的解剖过渡相关的独特特征,这与线粒体生理学和形态的主要适应平行,在前和视盘后视神经段。已经生成了三种具有不同 Opa1 突变的 DOA 小鼠模型,以研究导致 RGC 变性的内在机制,这些模型进一步揭示了与线粒体功能障碍相关的继发性症状,反映了在一组患者中看到的更严重的综合征表型。对 OPA1 突变的细胞、小鼠器官和患者血浆进行代谢组学分析揭示了与线粒体功能障碍相关的新的意外病理生理学机制,并且生物标志物与疾病的严重程度定量相关。在这里,我们回顾和综合这些数据,并提出了不同的方法来接受可能的治疗方法,以满足这种疾病未满足的临床需求,并为受影响的 DOA 患者带来希望。