Suppr超能文献

利用新型高通量微流控装置将功能工程纳米颗粒非内吞递送至活细胞的细胞质中。

Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel, high-throughput microfluidic device.

机构信息

Department of Chemistry, 77 Massachusetts Avenue, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, United States.

出版信息

Nano Lett. 2012 Dec 12;12(12):6322-7. doi: 10.1021/nl303421h. Epub 2012 Nov 16.

Abstract

The ability to straightforwardly deliver engineered nanoparticles into the cell cytosol with high viability will vastly expand the range of biological applications. Nanoparticles could potentially be used as delivery vehicles or as fluorescent sensors to probe the cell. In particular, quantum dots (QDs) may be used to illuminate cytosolic proteins for long-term microscopy studies. Whereas recent advances have been successful in specifically labeling proteins with QDs on the cell membrane, cytosolic delivery of QDs into live cells has remained challenging. In this report, we demonstrate high throughput delivery of QDs into live cell cytoplasm using an uncomplicated microfluidic device while maintaining cell viabilities of 80-90%. We verify that the nanoparticle surface interacts with the cytosolic environment and that the QDs remain nonaggregated so that single QDs can be observed.

摘要

将工程纳米粒子直接递送至细胞胞质溶胶中并保持高存活率的能力,将极大地扩展生物学应用的范围。纳米粒子可潜在地用作输送载体或荧光传感器,以探测细胞。特别地,量子点 (QD) 可用于对细胞质蛋白进行照明,以便进行长期显微镜研究。虽然最近的进展已成功地将 QD 专门标记在细胞膜上的蛋白质,但将 QD 递送至活细胞的胞质溶胶中仍然具有挑战性。在本报告中,我们使用简单的微流控装置,将 QD 高效地递送至活细胞胞质溶胶中,同时保持 80-90%的细胞存活率。我们验证了纳米粒子表面与胞质溶胶环境相互作用,并且 QD 保持非聚集状态,从而可以观察到单个 QD。

相似文献

2
Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
Integr Biol (Camb). 2010 Jun;2(5-6):265-77. doi: 10.1039/c0ib00002g. Epub 2010 Jun 8.
3
Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets.
Nano Lett. 2008 Nov;8(11):3887-92. doi: 10.1021/nl802311t. Epub 2008 Sep 25.
4
Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa.
Mol Pharm. 2021 Jan 4;18(1):429-440. doi: 10.1021/acs.molpharmaceut.0c01074. Epub 2020 Dec 21.
5
Cell penetrating peptide mediated quantum dot delivery and release in live mammalian cells.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4260-3. doi: 10.1109/EMBC.2014.6944565.
6
Intracellular tracking of single native molecules with electroporation-delivered quantum dots.
Anal Chem. 2014 Nov 18;86(22):11403-9. doi: 10.1021/ac503363m. Epub 2014 Nov 6.
7
Controlled delivery of quantum dots using microelectrophoresis technique: Intracellular behavior and preservation of cell viability.
Bioelectrochemistry. 2022 Apr;144:108035. doi: 10.1016/j.bioelechem.2021.108035. Epub 2021 Dec 4.
8
Dissecting the Factors Affecting the Fluorescence Stability of Quantum Dots in Live Cells.
ACS Appl Mater Interfaces. 2016 Apr 6;8(13):8401-8. doi: 10.1021/acsami.6b01742. Epub 2016 Mar 28.

引用本文的文献

1
Mechanically mediated cargo delivery to cells using microfluidic devices.
Biomicrofluidics. 2024 Dec 6;18(6):061302. doi: 10.1063/5.0240667. eCollection 2024 Dec.
2
Engineering a Microfluidic Platform to Cryopreserve Stem Cells: A DMSO-Free Sustainable Approach.
Adv Healthc Mater. 2024 Nov;13(29):e2401264. doi: 10.1002/adhm.202401264. Epub 2024 Aug 17.
3
A hybridized mechano-electroporation technique for efficient immune cell engineering.
J Adv Res. 2024 Oct;64:31-43. doi: 10.1016/j.jare.2023.11.009. Epub 2023 Nov 11.
5
Catalytic potential of endophytes facilitates synthesis of biometallic zinc oxide nanoparticles for agricultural application.
Biometals. 2022 Oct;35(5):967-985. doi: 10.1007/s10534-022-00417-1. Epub 2022 Jul 14.
6
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances.
Pharm Res. 2022 Nov;39(11):2673-2698. doi: 10.1007/s11095-022-03328-5. Epub 2022 Jul 7.
7
The cellular response to plasma membrane disruption for nanomaterial delivery.
Nano Converg. 2022 Feb 1;9(1):6. doi: 10.1186/s40580-022-00298-7.
8
Microfluidic mechanoporation for cellular delivery and analysis.
Mater Today Bio. 2021 Dec 20;13:100193. doi: 10.1016/j.mtbio.2021.100193. eCollection 2022 Jan.
9
On-chip multiplexed single-cell patterning and controllable intracellular delivery.
Microsyst Nanoeng. 2020 Feb 24;6:2. doi: 10.1038/s41378-019-0112-z. eCollection 2020.
10
Numerical simulation of intracellular drug delivery via rapid squeezing.
Biomicrofluidics. 2021 Aug 2;15(4):044102. doi: 10.1063/5.0059165. eCollection 2021 Jul.

本文引用的文献

1
Nanochannel electroporation delivers precise amounts of biomolecules into living cells.
Nat Nanotechnol. 2011 Oct 16;6(11):747-54. doi: 10.1038/nnano.2011.164.
6
Delivery of molecules into cells using carbon nanoparticles activated by femtosecond laser pulses.
Nat Nanotechnol. 2010 Aug;5(8):607-11. doi: 10.1038/nnano.2010.126. Epub 2010 Jul 18.
8
Delivering quantum dot-peptide bioconjugates to the cellular cytosol: escaping from the endolysosomal system.
Integr Biol (Camb). 2010 Jun;2(5-6):265-77. doi: 10.1039/c0ib00002g. Epub 2010 Jun 8.
10
Probing cellular events, one quantum dot at a time.
Nat Methods. 2010 Apr;7(4):275-85. doi: 10.1038/nmeth.1444. Epub 2010 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验