Section on Viral Gene Regulation, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA.
Virus Res. 2013 Feb;171(2):346-55. doi: 10.1016/j.virusres.2012.08.013. Epub 2012 Nov 10.
During (-) strong-stop DNA [(-) SSDNA] synthesis, RNase H cleavage of genomic viral RNA generates small 5'-terminal RNA fragments (14-18 nt) that remain annealed to the DNA. Unless these fragments are removed, the minus-strand transfer reaction, required for (-) SSDNA elongation, cannot occur. Here, we describe the mechanism of 5'-terminal RNA removal and the roles of HIV-1 nucleocapsid protein (NC) and RNase H cleavage in this process. Using an NC-dependent system that models minus-strand transfer, we show that the presence of short terminal fragments pre-annealed to (-) SSDNA has no impact on strand transfer, implying efficient fragment removal. Moreover, in reactions with an RNase H(-) reverse transcriptase mutant, NC alone is able to facilitate fragment removal, albeit less efficiently than in the presence of both RNase H activity and NC. Results obtained from novel electrophoretic gel mobility shift and Förster Resonance Energy Transfer assays, which each directly measure RNA fragment release from a duplex in the absence of DNA synthesis, demonstrate for the first time that the architectural integrity of NC's zinc finger (ZF) domains is absolutely required for this reaction. This suggests that NC's helix destabilizing activity (associated with the ZFs) facilitates strand exchange through the displacement of these short terminal RNAs by the longer 3' acceptor RNA, which forms a more stable duplex with (-) SSDNA. Taken together with previously published results, we conclude that NC-mediated fragment removal is linked mechanistically with selection of the correct primer for plus-strand DNA synthesis and tRNA removal step prior to plus-strand transfer. Thus, HIV-1 has evolved a single mechanism for these RNA removal reactions that are critical for successful reverse transcription.
在 (-) 强终止 DNA [(-) SSDNA] 合成过程中,核糖核酸酶 H 对基因组病毒 RNA 的切割产生了与 DNA 保持退火的小 5'-末端 RNA 片段(14-18nt)。除非这些片段被移除,否则 (-) SSDNA 延伸所需的负链转移反应就无法发生。在这里,我们描述了 5'-末端 RNA 去除的机制,以及 HIV-1 核衣壳蛋白(NC)和核糖核酸酶 H 切割在这个过程中的作用。使用依赖 NC 的模型系统,模拟负链转移,我们表明,预先退火到 (-) SSDNA 的短末端片段的存在对链转移没有影响,这意味着有效的片段去除。此外,在缺乏 RNase H 的逆转录酶突变体的反应中,NC 本身能够促进片段去除,尽管效率不如 RNase H 活性和 NC 存在时高。从新颖的电泳凝胶迁移率和Förster 共振能量转移测定中获得的结果,这些测定方法都直接测量了在没有 DNA 合成的情况下从双链体中释放 RNA 片段,首次证明了 NC 的锌指(ZF)结构域的结构完整性对这个反应是绝对必需的。这表明,NC 的螺旋去稳定活性(与 ZFs 相关)通过更长的 3'接受 RNA 取代这些短的末端 RNA,促进了链交换,因为它与 (-) SSDNA 形成了更稳定的双链体。与之前发表的结果相结合,我们得出结论,NC 介导的片段去除与选择正确的引物进行正链 DNA 合成以及在正链转移之前去除 tRNA 的机制相关。因此,HIV-1 已经进化出一种单一的机制来进行这些对成功逆转录至关重要的 RNA 去除反应。