Max-Planck-Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.
Psychiatry Res. 2013 Jun 30;212(3):230-6. doi: 10.1016/j.pscychresns.2012.04.007. Epub 2012 Nov 10.
The application of support vector machine classification (SVM) to combined information from magnetic resonance imaging (MRI) and [F18]fluorodeoxyglucose positron emission tomography (FDG-PET) has been shown to improve detection and differentiation of Alzheimer's disease dementia (AD) and frontotemporal lobar degeneration. To validate this approach for the most frequent dementia syndrome AD, and to test its applicability to multicenter data, we randomly extracted FDG-PET and MRI data of 28 AD patients and 28 healthy control subjects from the database provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI) and compared them to data of 21 patients with AD and 13 control subjects from our own Leipzig cohort. SVM classification using combined volume-of-interest information from FDG-PET and MRI based on comprehensive quantitative meta-analyses investigating dementia syndromes revealed a higher discrimination accuracy in comparison to single modality classification. For the ADNI dataset accuracy rates of up to 88% and for the Leipzig cohort of up to 100% were obtained. Classifiers trained on the ADNI data discriminated the Leipzig cohorts with an accuracy of 91%. In conclusion, our results suggest SVM classification based on quantitative meta-analyses of multicenter data as a valid method for individual AD diagnosis. Furthermore, combining imaging information from MRI and FDG-PET might substantially improve the accuracy of AD diagnosis.
支持向量机分类(SVM)在磁共振成像(MRI)和 [F18]氟脱氧葡萄糖正电子发射断层扫描(FDG-PET)联合信息中的应用已被证明可以提高阿尔茨海默病痴呆(AD)和额颞叶变性的检测和鉴别能力。为了验证这种方法在最常见的痴呆综合征 AD 中的有效性,并测试其在多中心数据中的适用性,我们从阿尔茨海默病神经影像学倡议(ADNI)提供的数据库中随机提取了 28 名 AD 患者和 28 名健康对照者的 FDG-PET 和 MRI 数据,并将其与我们自己的莱比锡队列中的 21 名 AD 患者和 13 名对照者的数据进行了比较。使用基于全面定量荟萃分析的 FDG-PET 和 MRI 联合感兴趣区信息的 SVM 分类来研究痴呆综合征,与单一模态分类相比,分类准确性更高。对于 ADNI 数据集,准确率高达 88%,对于莱比锡队列,准确率高达 100%。在 ADNI 数据上训练的分类器对莱比锡队列的准确率为 91%。总之,我们的结果表明,基于多中心数据的定量荟萃分析的 SVM 分类是一种用于个体 AD 诊断的有效方法。此外,结合 MRI 和 FDG-PET 的成像信息可能会极大地提高 AD 诊断的准确性。