Suppr超能文献

基于局部空间信息和高斯加权卡方距离的矢状位 MR 图像中椎体的自适应分割。

Adaptive segmentation of vertebral bodies from sagittal MR images based on local spatial information and Gaussian weighted chi-square distance.

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.

出版信息

J Digit Imaging. 2013 Jun;26(3):578-93. doi: 10.1007/s10278-012-9552-9.

Abstract

We present a novel method for the automatic segmentation of the vertebral bodies from 2D sagittal magnetic resonance (MR) images of the spine. First, a new affinity matrix is constructed by incorporating neighboring information, which local intensity is considered to depict the image and overcome the noise effectively. Second, the Gaussian kernel function is to weight chi-square distance based on the neighboring information, which the vital spatial structure of the image is introduced to improve the accuracy of the segmentation task. Third, an adaptive local scaling parameter is utilized to facilitate the image segmentation and avoid the optimal configuration of controlling parameter manually. The encouraging results on the spinal MR images demonstrate the advantage of the proposed method over other methods in terms of both efficiency and robustness.

摘要

我们提出了一种新的方法,用于从脊柱的二维矢状磁共振(MR)图像自动分割椎体。首先,通过合并相邻信息构建新的相似性矩阵,其局部强度被认为可以有效地描绘图像并克服噪声。其次,基于相邻信息对基于卡方距离的高斯核函数进行加权,从而引入图像的重要空间结构以提高分割任务的准确性。第三,使用自适应局部比例参数来方便图像分割,并避免手动优化控制参数的配置。在脊柱 MR 图像上的令人鼓舞的结果表明,该方法在效率和鲁棒性方面都优于其他方法。

相似文献

3
Fuzzy local Gaussian mixture model for brain MR image segmentation.用于脑部磁共振图像分割的模糊局部高斯混合模型
IEEE Trans Inf Technol Biomed. 2012 May;16(3):339-47. doi: 10.1109/TITB.2012.2185852. Epub 2012 Jan 24.
4
Robust generative asymmetric GMM for brain MR image segmentation.用于脑部磁共振图像分割的稳健生成式非对称高斯混合模型
Comput Methods Programs Biomed. 2017 Nov;151:123-138. doi: 10.1016/j.cmpb.2017.08.017. Epub 2017 Aug 24.
9
Multi-level adaptive segmentation of multi-parameter MR brain images.多参数磁共振脑图像的多级自适应分割
Comput Med Imaging Graph. 2000 Mar-Apr;24(2):87-98. doi: 10.1016/s0895-6111(99)00042-7.
10
Semi-supervised hybrid spine network for segmentation of spine MR images.半监督混合脊柱网络用于脊柱磁共振图像分割。
Comput Med Imaging Graph. 2023 Jul;107:102245. doi: 10.1016/j.compmedimag.2023.102245. Epub 2023 May 16.

引用本文的文献

1
Automated Segmentation of Tissues Using CT and MRI: A Systematic Review.基于 CT 和 MRI 的组织自动分割:系统评价。
Acad Radiol. 2019 Dec;26(12):1695-1706. doi: 10.1016/j.acra.2019.07.006. Epub 2019 Aug 10.
2
Quantitative magnetic resonance imaging of the lumbar intervertebral discs.腰椎间盘的定量磁共振成像
Quant Imaging Med Surg. 2016 Dec;6(6):744-755. doi: 10.21037/qims.2016.12.09.
3
On computerized methods for spine analysis in MRI: a systematic review.关于磁共振成像中脊柱分析的计算机化方法:一项系统综述。
Int J Comput Assist Radiol Surg. 2016 Aug;11(8):1445-65. doi: 10.1007/s11548-016-1350-2. Epub 2016 Feb 9.

本文引用的文献

1
An adaptive mean-shift framework for MRI brain segmentation.一种用于MRI脑部分割的自适应均值漂移框架。
IEEE Trans Med Imaging. 2009 Aug;28(8):1238-50. doi: 10.1109/TMI.2009.2013850. Epub 2009 Feb 10.
2
Active contours without edges.无边缘活动轮廓。
IEEE Trans Image Process. 2001;10(2):266-77. doi: 10.1109/83.902291.
3
Normalized cuts in 3-D for spinal MRI segmentation.用于脊柱MRI分割的三维归一化割。
IEEE Trans Med Imaging. 2004 Jan;23(1):36-44. doi: 10.1109/TMI.2003.819929.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验