Departamento de Matemáticas, E. T. S. I. Industriales and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, Ciudad Real, Spain.
Bull Math Biol. 2012 Dec;74(12):2875-96. doi: 10.1007/s11538-012-9786-1. Epub 2012 Nov 14.
Glioblastoma is a rapidly evolving high-grade astrocytoma that is distinguished pathologically from lower grade gliomas by the presence of necrosis and microvascular hyperplasia. Necrotic areas are typically surrounded by hypercellular regions known as "pseudopalisades" originated by local tumor vessel occlusions that induce collective cellular migration events. This leads to the formation of waves of tumor cells actively migrating away from central hypoxia. We present a mathematical model that incorporates the interplay among two tumor cell phenotypes, a necrotic core and the oxygen distribution. Our simulations reveal the formation of a traveling wave of tumor cells that reproduces the observed histologic patterns of pseudopalisades. Additional simulations of the model equations show that preventing the collapse of tumor microvessels leads to slower glioma invasion, a fact that might be exploited for therapeutic purposes.
胶质母细胞瘤是一种快速进化的高级别星形细胞瘤,其在病理学上与低级别胶质瘤区分开来,其特征是存在坏死和微血管增生。坏死区域通常被称为“假栅栏”的细胞丰富区域包围,这些区域是由局部肿瘤血管阻塞引起的,这些阻塞会诱导细胞集体迁移事件。这导致了一波波的肿瘤细胞主动从中央缺氧区迁移。我们提出了一个数学模型,该模型结合了两种肿瘤细胞表型(坏死核心和氧气分布)之间的相互作用。我们的模拟结果再现了假栅栏的观察到的组织学模式,肿瘤细胞的迁移波形成。对模型方程的附加模拟表明,防止肿瘤微血管崩溃会导致胶质瘤侵袭速度变慢,这一事实可能被用于治疗目的。