文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多尺度框架对驱动多形性胶质母细胞瘤生长和侵袭的代谢率变化的见解。

Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion.

作者信息

Amereh Meitham, Shojaei Shahla, Seyfoori Amir, Walsh Tavia, Dogra Prashant, Cristini Vittorio, Nadler Ben, Akbari Mohsen

机构信息

Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.

Laboratory for Innovations in MicroEngineering (LiME), University of Victoria, 3800 Finnerty Road, Victoria, V8P 5C2, BC, Canada.

出版信息

Commun Eng. 2024 Nov 25;3(1):176. doi: 10.1038/s44172-024-00319-9.


DOI:10.1038/s44172-024-00319-9
PMID:39587319
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11589919/
Abstract

Non-physiological levels of oxygen and nutrients within the tumors result in heterogeneous cell populations that exhibit distinct necrotic, hypoxic, and proliferative zones. Among these zonal cellular properties, metabolic rates strongly affect the overall growth and invasion of tumors. Here, we report on a hybrid discrete-continuum (HDC) mathematical framework that uses metabolic data from a biomimetic two-dimensional (2D) in-vitro cancer model to predict three-dimensional (3D) behaviour of in-vitro human glioblastoma (hGB). The mathematical model integrates modules of continuum, discrete, and neurons. Results indicated that the HDC model is capable of quantitatively predicting growth, invasion length, and the asymmetric finger-type invasion pattern in in-vitro hGB tumors. Additionally, the model could predict the reduction in invasion length of hGB tumoroids in response to temozolomide (TMZ). This model has the potential to incorporate additional modules, including immune cells and signaling pathways governing cancer/immune cell interactions, and can be used to investigate targeted therapies.

摘要

肿瘤内非生理水平的氧气和营养物质导致细胞群体异质性,表现出不同的坏死、缺氧和增殖区域。在这些区域细胞特性中,代谢率强烈影响肿瘤的整体生长和侵袭。在此,我们报告一种混合离散-连续统(HDC)数学框架,该框架使用来自仿生二维(2D)体外癌症模型的代谢数据来预测体外人胶质母细胞瘤(hGB)的三维(3D)行为。该数学模型整合了连续统、离散和神经元模块。结果表明,HDC模型能够定量预测体外hGB肿瘤的生长、侵袭长度和不对称指状侵袭模式。此外,该模型可以预测替莫唑胺(TMZ)处理后hGB类肿瘤侵袭长度的减少。该模型有潜力纳入其他模块,包括免疫细胞和控制癌症/免疫细胞相互作用的信号通路,并可用于研究靶向治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/93d03b576380/44172_2024_319_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/911eef0e981c/44172_2024_319_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/76324f4e3178/44172_2024_319_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/fead4d709883/44172_2024_319_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/cba593a03913/44172_2024_319_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/d75103f7769f/44172_2024_319_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/42500b10a154/44172_2024_319_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/fe348787ab0a/44172_2024_319_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/d3ade4d1aaca/44172_2024_319_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/279ced048b81/44172_2024_319_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/54863d321952/44172_2024_319_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/93d03b576380/44172_2024_319_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/911eef0e981c/44172_2024_319_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/76324f4e3178/44172_2024_319_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/fead4d709883/44172_2024_319_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/cba593a03913/44172_2024_319_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/d75103f7769f/44172_2024_319_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/42500b10a154/44172_2024_319_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/fe348787ab0a/44172_2024_319_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/d3ade4d1aaca/44172_2024_319_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/279ced048b81/44172_2024_319_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/54863d321952/44172_2024_319_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69cb/11589919/93d03b576380/44172_2024_319_Fig11_HTML.jpg

相似文献

[1]
Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion.

Commun Eng. 2024-11-25

[2]
3D-Printed Tumor-on-a-Chip Model for Investigating the Effect of Matrix Stiffness on Glioblastoma Tumor Invasion.

Biomimetics (Basel). 2023-9-11

[3]
Combination therapy in a xenograft model of glioblastoma: enhancement of the antitumor activity of temozolomide by an MDM2 antagonist.

J Neurosurg. 2016-5-13

[4]
IL-19 as a promising theranostic target to reprogram the glioblastoma immunosuppressive microenvironment.

J Biomed Sci. 2025-3-8

[5]
Enhancing temozolomide efficacy in GBM: The synergistic role of chuanxiong rhizoma essential oil.

Phytomedicine. 2025-5

[6]
MicroRNA-128-3p Enhances the Chemosensitivity of Temozolomide in Glioblastoma by Targeting c-Met and EMT.

Sci Rep. 2020-6-11

[7]
Extracellular vesicles secreted by 3D tumor organoids are enriched for immune regulatory signaling biomolecules compared to conventional 2D glioblastoma cell systems.

Front Immunol. 2024

[8]
Author Correction: Insights from a multiscale framework on metabolic rate variation driving glioblastoma multiforme growth and invasion.

Commun Eng. 2025-3-29

[9]
Investigating Programmed Cell Death and Tumor Invasion in a Three-Dimensional (3D) Microfluidic Model of Glioblastoma.

Int J Mol Sci. 2020-4-30

[10]
A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme.

Nanomedicine. 2015-2

引用本文的文献

[1]
Tumoroid Model Reveals Synergistic Impairment of Metabolism by Iron Chelators and Temozolomide in Chemo-Resistant Patient-derived Glioblastoma Cells.

Adv Sci (Weinh). 2025-5

本文引用的文献

[1]
Imaging Spectrum of the Developing Glioblastoma: A Cross-Sectional Observation Study.

Curr Oncol. 2023-7-13

[2]
Brain Tumor Networks in Diffuse Glioma.

Neurotherapeutics. 2022-10

[3]
Glucose Influences the Response of Cells to Temozolomide and Dexamethasone.

Cancer Control. 2022

[4]
The Role of Matrix Metalloproteinases (MMP-8, MMP-9, MMP-13) in Periodontal and Peri-Implant Pathological Processes.

Int J Mol Sci. 2022-2-4

[5]
Hallmarks of Cancer: New Dimensions.

Cancer Discov. 2022-1

[6]
Modeling of Tumor Spheroid Formation and Growth.

Micromachines (Basel). 2021-6-25

[7]
Linking EMT programmes to normal and neoplastic epithelial stem cells.

Nat Rev Cancer. 2021-5

[8]
Modeling invasion patterns in the glioblastoma battlefield.

PLoS Comput Biol. 2021-1

[9]
EMT, MET, Plasticity, and Tumor Metastasis.

Trends Cell Biol. 2020-10

[10]
Metabolic Adaptations in Cancer Stem Cells.

Front Oncol. 2020-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索