Suppr超能文献

相似文献

1
Optogenetic control of cell function using engineered photoreceptors.
Biol Cell. 2013 Feb;105(2):59-72. doi: 10.1111/boc.201200056. Epub 2012 Dec 21.
2
Blue-Light Receptors for Optogenetics.
Chem Rev. 2018 Nov 14;118(21):10659-10709. doi: 10.1021/acs.chemrev.8b00163. Epub 2018 Jul 9.
3
Expanding the optogenetics toolkit.
Nat Methods. 2018 Dec;15(12):1003. doi: 10.1038/s41592-018-0244-3.
4
Optogenetic tools for dissecting complex intracellular signaling pathways.
Biochem Biophys Res Commun. 2020 Jun 25;527(2):331-336. doi: 10.1016/j.bbrc.2019.12.132. Epub 2020 Jan 14.
5
Guidelines for Photoreceptor Engineering.
Methods Mol Biol. 2016;1408:389-403. doi: 10.1007/978-1-4939-3512-3_27.
6
Optogenetic Methods in Plant Biology.
Annu Rev Plant Biol. 2023 May 22;74:313-339. doi: 10.1146/annurev-arplant-071122-094840.
7
Enlightening Allostery: Designing Switchable Proteins by Photoreceptor Fusion.
Adv Biol (Weinh). 2021 May;5(5):e2000181. doi: 10.1002/adbi.202000181. Epub 2020 Oct 26.
8
Optogenetic control of signaling in mammalian cells.
Biotechnol J. 2015 Feb;10(2):273-83. doi: 10.1002/biot.201400077. Epub 2014 Sep 12.
9
Optogenetic toolkit for precise control of calcium signaling.
Cell Calcium. 2017 Jun;64:36-46. doi: 10.1016/j.ceca.2017.01.004. Epub 2017 Jan 16.
10
Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators.
Int J Mol Sci. 2020 Sep 7;21(18):6522. doi: 10.3390/ijms21186522.

引用本文的文献

1
Protein design accelerates the development and application of optogenetic tools.
Comput Struct Biotechnol J. 2025 Feb 21;27:717-732. doi: 10.1016/j.csbj.2025.02.014. eCollection 2025.
2
Significant Advancements and Evolutions in Chimeric Antigen Receptor Design.
Int J Mol Sci. 2024 Nov 13;25(22):12201. doi: 10.3390/ijms252212201.
3
Optogenetic Tools for Regulating RNA Metabolism and Functions.
Chembiochem. 2024 Dec 16;25(24):e202400615. doi: 10.1002/cbic.202400615. Epub 2024 Nov 4.
4
Studying CaMKII: Tools and standards.
Cell Rep. 2024 Apr 23;43(4):113982. doi: 10.1016/j.celrep.2024.113982. Epub 2024 Mar 21.
5
Shining a light on RhoA: Optical control of cell contractility.
Int J Biochem Cell Biol. 2023 Aug;161:106442. doi: 10.1016/j.biocel.2023.106442. Epub 2023 Jun 20.
6
Interrogating biological systems using visible-light-powered catalysis.
Nat Rev Chem. 2021 May;5(5):322-337. doi: 10.1038/s41570-021-00265-6. Epub 2021 Mar 29.
7
Coupling Cell Communication and Optogenetics: Implementation of a Light-Inducible Intercellular System in Yeast.
ACS Synth Biol. 2023 Jan 20;12(1):71-82. doi: 10.1021/acssynbio.2c00338. Epub 2022 Dec 19.
8
Study of near-infrared light-induced excitation of upconversion nanoparticles as a vector for non-viral DNA delivery.
RSC Adv. 2020 Nov 11;10(67):41013-41021. doi: 10.1039/d0ra05385f. eCollection 2020 Nov 9.
9
New developments in the biology of fibroblast growth factors.
WIREs Mech Dis. 2022 Jul;14(4):e1549. doi: 10.1002/wsbm.1549. Epub 2022 Feb 9.
10
Engineering CAR T cells for enhanced efficacy and safety.
APL Bioeng. 2022 Jan 18;6(1):011502. doi: 10.1063/5.0073746. eCollection 2022 Mar.

本文引用的文献

1
Light-inducible system for tunable protein expression in Neurospora crassa.
G3 (Bethesda). 2012 Oct;2(10):1207-12. doi: 10.1534/g3.112.003939. Epub 2012 Oct 1.
2
Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors.
J Am Chem Soc. 2012 Oct 10;134(40):16480-3. doi: 10.1021/ja3065667. Epub 2012 Sep 27.
3
Light-mediated control of DNA transcription in yeast.
Methods. 2012 Dec;58(4):385-91. doi: 10.1016/j.ymeth.2012.08.004. Epub 2012 Aug 15.
4
Optogenetic control of phosphoinositide metabolism.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):E2316-23. doi: 10.1073/pnas.1211305109. Epub 2012 Jul 30.
5
Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins.
J Biol Chem. 2012 Jun 22;287(26):22165-72. doi: 10.1074/jbc.M112.360545. Epub 2012 May 10.
6
Designing photoswitchable peptides using the AsLOV2 domain.
Chem Biol. 2012 Apr 20;19(4):507-17. doi: 10.1016/j.chembiol.2012.02.006.
7
Mechanistic insight into the photosensory versatility of DXCF cyanobacteriochromes.
Biochemistry. 2012 May 1;51(17):3576-85. doi: 10.1021/bi300171s. Epub 2012 Apr 18.
8
Crystal structures of Aureochrome1 LOV suggest new design strategies for optogenetics.
Structure. 2012 Apr 4;20(4):698-706. doi: 10.1016/j.str.2012.02.016. Epub 2012 Apr 3.
9
Molecular tools and approaches for optogenetics.
Biol Psychiatry. 2012 Jun 15;71(12):1033-8. doi: 10.1016/j.biopsych.2012.02.019. Epub 2012 Apr 4.
10
LOV to BLUF: flavoprotein contributions to the optogenetic toolkit.
Mol Plant. 2012 May;5(3):533-44. doi: 10.1093/mp/sss020. Epub 2012 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验