Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
Dalton Trans. 2013 Mar 7;42(9):3059-70. doi: 10.1039/c2dt32179c. Epub 2012 Nov 19.
The carbomethoxy substituted dithiolene ligand (L(COOMe)) enabled us to develop a series of new bis(ene-1,2-dithiolato)tungsten complexes including W(IV)O, W(IV)(OSiBuPh(2)), W(VI)O(2), W(VI)O(OSiBuPh(2)) and W(VI)O(S) core structures. By using these tungsten complexes, a systematic study of the terminal monodentate ligand effects has been performed on the structural, spectroscopic properties and reactivity. The structure and spectroscopic properties of the tungsten complexes have also been compared to those of the molybdenum complexes coordinated by the same ligand to investigate the effects of the metal ion (W vs. Mo). X-ray crystallographic analyses of the tungsten(IV) complexes have revealed that the tungsten centres adopt a distorted square pyramidal geometry with a dithiolene ligand having an ene-1,2-dithiolate form. On the other hand, the dioxotungsten(VI) complex exhibits an octahedral structure consisting of the bidentate L(COOMe) and two oxo groups, in which π-delocalization was observed between the W(VI)O(2) and ene-1,2-dithiolate units. The tungsten(IV) and dioxotungsten(VI) complexes are isostructural with the molybdenum counter parts. DFT calculation study of the W(VI)O(S) complex has indicated that the W=S bond of 2.2 Å is close to the bond length between the tungsten centre and ambiguously assigned terminal monodentate atom in aldehyde oxidoreductase of the tungsten enzyme. Resonance Raman (rR) spectrum of the W(VI)O(S) complex has shown the two inequivalent L(COOMe) ligands with respect to their bonding interactions with the tungsten centre, reproducing the appearance of two ν(C=C) stretches in the rR spectrum of aldehyde oxidoreductase. Sulfur atom transfer reaction from the W(VI)O(S) complex to triphenylphosphines has also been studied kinetically to demonstrate that the tungsten complex has a lower reactivity by about one-order of magnitude, when compared with its molybdenum counterpart.
甲氧基取代的二硫烯配体 (L(COOMe)) 使我们能够开发一系列新的双(烯-1,2-二硫醇ato) 钨配合物,包括 W(IV)O、W(IV)(OSiBuPh(2))、W(VI)O(2)、W(VI)O(OSiBuPh(2)) 和 W(VI)O(S) 核结构。通过使用这些钨配合物,我们对末端单齿配体的效应进行了系统的研究,包括结构、光谱性质和反应性。还比较了钨配合物与相同配体配位的钼配合物的结构和光谱性质,以研究金属离子 (W 与 Mo) 的影响。X 射线晶体学分析表明,钨中心采用扭曲的四方锥几何形状,二硫烯配体具有烯-1,2-二硫醇形式。另一方面,二氧代钨(VI) 配合物呈现出八面体结构,由双齿 L(COOMe) 和两个氧基团组成,在该结构中观察到 W(VI)O(2) 和烯-1,2-二硫醇单元之间的π离域。钨(IV) 和二氧代钨(VI) 配合物与钼对应物具有相同的结构。W(VI)O(S) 配合物的 DFT 计算研究表明,2.2 Å 的 W=S 键接近于钨酶中醛氧化还原酶中钨中心和含糊指定的末端单齿原子之间的键长。W(VI)O(S) 配合物的共振拉曼 (rR) 光谱显示了两个不等价的 L(COOMe) 配体,它们与钨中心的键合相互作用不同,重现了醛氧化还原酶中 rR 光谱中两个 ν(C=C) 伸展的出现。还研究了 W(VI)O(S) 配合物向三苯基膦的硫原子转移反应的动力学,以证明当与钼对应物相比时,该钨配合物的反应性低约一个数量级。