Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
Eur J Nucl Med Mol Imaging. 2010 Aug;37(8):1539-50. doi: 10.1007/s00259-010-1443-z. Epub 2010 May 2.
Despite current advances in PET/CT systems, blood sampling still remains the standard method to obtain the radiotracer input function for tracer kinetic modelling. The purpose of this study was to validate the use of image-derived input functions (IDIF) of the carotid and femoral arteries to measure the arterial input function (AIF) in PET imaging. The data were obtained from two different research studies, one using (18)F-FDG for brain imaging and the other using (11)C-acetate and (18)F-fluoro-6-thioheptadecanoic acid ((18)F-FTHA) in femoral muscles.
The method was validated with two phantom systems. First, a static phantom consisting of syringes of different diameters containing radioactivity was used to determine the recovery coefficient (RC) and spill-in factors. Second, a dynamic phantom built to model bolus injection and clearance of tracers was used to establish the correlation between blood sampling, AIF and IDIF. The RC was then applied to the femoral artery data from PET imaging studies with (11)C-acetate and (18)F-FTHA and to carotid artery data from brain imaging with (18)F-FDG. These IDIF data were then compared to actual AIFs from patients.
With (11)C-acetate, the perfusion index in the femoral muscle was 0.34+/-0.18 min(-1) when estimated from the actual time-activity blood curve, 0.29+/-0.15 min(-1) when estimated from the corrected IDIF, and 0.66+/-0.41 min(-1) when the IDIF data were not corrected for RC. A one-way repeated measures (ANOVA) and Tukey's test showed a statistically significant difference for the IDIF not corrected for RC (p<0.0001). With (18)F-FTHA there was a strong correlation between Patlak slopes, the plasma to tissue transfer rate calculated using the true plasma radioactivity content and the corrected IDIF for the femoral muscles (vastus lateralis r=0.86, p=0.027; biceps femoris r=0.90, p=0.017). On the other hand, there was no correlation between the values derived using the AIF and those derived using the uncorrected IDIF. Finally, in the brain imaging study with (18)F-FDG, the cerebral metabolic rate of glucose (CMRglc) measured using the uncorrected IDIF was consistently overestimated. The CMRglc obtained using blood sampling was 13.1+/-3.9 mg/100 g per minute and 14.0+/-5.7 mg/100 g per minute using the corrected IDIF (r ( 2 )=0.90).
Correctly obtained, carotid and femoral artery IDIFs can be used as a substitute for AIFs to perform tracer kinetic modelling in skeletal femoral muscles and brain analyses.
尽管目前 PET/CT 系统取得了进步,但采血仍然是获得示踪剂动力学模型示踪剂输入函数的标准方法。本研究的目的是验证颈动脉和股动脉的图像衍生输入函数(IDIF)用于测量 PET 成像中的动脉输入函数(AIF)。该数据来自两项不同的研究,一项使用(18)F-FDG 进行脑成像,另一项使用(11)C-乙酸盐和(18)F-氟-6-硫庚酸((18)F-FTHA)进行股肌肉成像。
该方法通过两个体模系统进行验证。首先,使用包含放射性的不同直径注射器的静态体模来确定恢复系数(RC)和溢出因子。其次,构建了一个动态体模,用于模拟示踪剂的推注和清除,以建立采血、AIF 和 IDIF 之间的相关性。然后,将 RC 应用于使用(11)C-乙酸盐和(18)F-FTHA 进行的股肌肉 PET 成像研究中的股动脉数据,以及使用(18)F-FDG 进行的脑成像中的颈动脉数据。然后将这些 IDIF 数据与患者的实际 AIF 进行比较。
使用(11)C-乙酸盐时,股肌肉的灌注指数从实际时间-活性血液曲线估算为 0.34+/-0.18 min(-1),从校正后的 IDIF 估算为 0.29+/-0.15 min(-1),从未校正 RC 的 IDIF 数据估算为 0.66+/-0.41 min(-1)。单向重复测量(ANOVA)和 Tukey 检验表明,未校正 RC 的 IDIF 存在统计学差异(p<0.0001)。使用(18)F-FTHA 时,股外侧肌和股二头肌的 Patlak 斜率、使用真实血浆放射性含量计算的血浆到组织转移率与校正后的 IDIF 之间存在很强的相关性(股外侧肌 r=0.86,p=0.027;股二头肌 r=0.90,p=0.017)。另一方面,使用 AIF 获得的值与使用未校正 IDIF 获得的值之间没有相关性。最后,在使用(18)F-FDG 进行的脑成像研究中,使用未校正的 IDIF 测量的脑葡萄糖代谢率(CMRglc)始终被高估。使用采血获得的 CMRglc 为 13.1+/-3.9 mg/100 g/min,使用校正后的 IDIF 为 14.0+/-5.7 mg/100 g/min(r(2)=0.90)。
正确获得的颈动脉和股动脉 IDIF 可用于替代 AIF,以在骨骼肌和脑部分析中进行示踪剂动力学建模。