Suppr超能文献

MotA-FliG 界面上高度保守的带电残基在细菌鞭毛马达旋转中的独特作用。

Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation.

机构信息

Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.

出版信息

J Bacteriol. 2013 Feb;195(3):474-81. doi: 10.1128/JB.01971-12. Epub 2012 Nov 16.

Abstract

Electrostatic interactions between the stator protein MotA and the rotor protein FliG are important for bacterial flagellar motor rotation. Arg90 and Glu98 of MotA are required not only for torque generation but also for stator assembly around the rotor, but their actual roles remain unknown. Here we analyzed the roles of functionally important charged residues at the MotA-FliG interface in motor performance. About 75% of the motA(R90E) cells and 45% of the motA(E98K) cells showed no fluorescent spots of green fluorescent protein (GFP)-MotB, indicating reduced efficiency of stator assembly around the rotor. The FliG(D289K) and FliG(R281V) mutations, which restore the motility of the motA(R90E) and motA(E98K) mutants, respectively, showed reduced numbers and intensity of GFP-MotB spots as well. The FliG(D289K) mutation significantly recovered the localization of GFP-MotB to the motor in the motA(R90E) mutant, whereas the FliG(R281V) mutation did not recover the GFP-MotB localization in the motA(E98K) mutant. These results suggest that the MotA-Arg90-FliG-Asp289 interaction is critical for the proper positioning of the stators around the rotor, whereas the MotA-Glu98-FliG-Arg281 interaction is more important for torque generation.

摘要

定子蛋白 MotA 与转子蛋白 FliG 之间的静电相互作用对于细菌鞭毛马达的旋转至关重要。MotA 的 Arg90 和 Glu98 不仅对于产生扭矩,而且对于定子在转子周围的组装都是必需的,但它们的实际作用仍然未知。在这里,我们分析了在马达性能中位于 MotA-FliG 界面的功能重要的带电残基的作用。约 75%的 motA(R90E)细胞和 45%的 motA(E98K)细胞没有绿色荧光蛋白 (GFP)-MotB 的荧光斑点,表明定子围绕转子组装的效率降低。分别恢复 motA(R90E)和 motA(E98K)突变体运动能力的 FliG(D289K)和 FliG(R281V)突变体,GFP-MotB 斑点的数量和强度也减少。FliG(D289K)突变体显著恢复了 GFP-MotB 在 motA(R90E)突变体中的马达定位,而 FliG(R281V)突变体不能恢复 GFP-MotB 在 motA(E98K)突变体中的定位。这些结果表明,MotA-Arg90-FliG-Asp289 相互作用对于定子在转子周围的正确定位至关重要,而 MotA-Glu98-FliG-Arg281 相互作用对于产生扭矩更为重要。

相似文献

1
Distinct roles of highly conserved charged residues at the MotA-FliG interface in bacterial flagellar motor rotation.
J Bacteriol. 2013 Feb;195(3):474-81. doi: 10.1128/JB.01971-12. Epub 2012 Nov 16.
2
Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor.
Mol Microbiol. 2010 Dec;78(5):1117-29. doi: 10.1111/j.1365-2958.2010.07391.x. Epub 2010 Sep 27.
4
Function of proline residues of MotA in torque generation by the flagellar motor of Escherichia coli.
J Bacteriol. 1999 Jun;181(11):3542-51. doi: 10.1128/JB.181.11.3542-3551.1999.
5
Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the H-Driven Flagellar Motor.
J Bacteriol. 2019 Feb 25;201(6). doi: 10.1128/JB.00727-18. Print 2019 Mar 15.
6
Motility protein interactions in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1970-4. doi: 10.1073/pnas.92.6.1970.
7
Electrostatic interactions between rotor and stator in the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6436-41. doi: 10.1073/pnas.95.11.6436.
9
Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti.
Mol Microbiol. 2005 May;56(3):708-18. doi: 10.1111/j.1365-2958.2005.04565.x.

引用本文的文献

1
Genetic analysis of flagellar-mediated surface sensing by PA14.
J Bacteriol. 2025 Jun 5:e0052024. doi: 10.1128/jb.00520-24.
2
Genetic Analysis of Flagellar-Mediated Surface Sensing by PA14.
bioRxiv. 2024 Dec 5:2024.12.05.627040. doi: 10.1101/2024.12.05.627040.
4
Viscosity-dependent determinants of impacting the velocity of flagellar motility.
mBio. 2024 Jan 16;15(1):e0254423. doi: 10.1128/mbio.02544-23. Epub 2023 Dec 12.
5
Structure, Assembly, and Function of Flagella Responsible for Bacterial Locomotion.
EcoSal Plus. 2023 Dec 12;11(1):eesp00112023. doi: 10.1128/ecosalplus.esp-0011-2023. Epub 2023 Jun 1.
6
Flagellar brake protein YcgR interacts with motor proteins MotA and FliG to regulate the flagellar rotation speed and direction.
Front Microbiol. 2023 Apr 14;14:1159974. doi: 10.3389/fmicb.2023.1159974. eCollection 2023.
9
The Periplasmic Domain of the Ion-Conducting Stator of Bacterial Flagella Regulates Force Generation.
Front Microbiol. 2022 Apr 27;13:869187. doi: 10.3389/fmicb.2022.869187. eCollection 2022.

本文引用的文献

2
3
Genetic characterization of conserved charged residues in the bacterial flagellar type III export protein FlhA.
PLoS One. 2011;6(7):e22417. doi: 10.1371/journal.pone.0022417. Epub 2011 Jul 19.
4
Architecture of the flagellar rotor.
EMBO J. 2011 Jun 14;30(14):2962-71. doi: 10.1038/emboj.2011.188.
5
Structural insight into the rotational switching mechanism of the bacterial flagellar motor.
PLoS Biol. 2011 May;9(5):e1000616. doi: 10.1371/journal.pbio.1000616. Epub 2011 May 10.
6
Charged residues in the cytoplasmic loop of MotA are required for stator assembly into the bacterial flagellar motor.
Mol Microbiol. 2010 Dec;78(5):1117-29. doi: 10.1111/j.1365-2958.2010.07391.x. Epub 2010 Sep 27.
7
Evidence for symmetry in the elementary process of bidirectional torque generation by the bacterial flagellar motor.
Proc Natl Acad Sci U S A. 2010 Oct 12;107(41):17616-20. doi: 10.1073/pnas.1007448107. Epub 2010 Sep 27.
8
Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching.
Nature. 2010 Aug 19;466(7309):996-1000. doi: 10.1038/nature09300. Epub 2010 Aug 1.
9
Proton-conductivity assay of plugged and unplugged MotA/B proton channel by cytoplasmic pHluorin expressed in Salmonella.
FEBS Lett. 2010 Mar 19;584(6):1268-72. doi: 10.1016/j.febslet.2010.02.051. Epub 2010 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验