Suppr超能文献

用于组织定向制造的层状丝支架。

Laminar silk scaffolds for aligned tissue fabrication.

机构信息

Department of Biotechnology, Indian Institute of Technology, Guwahati-781 039, India.

出版信息

Macromol Biosci. 2013 Jan;13(1):48-58. doi: 10.1002/mabi.201200230. Epub 2012 Nov 19.

Abstract

3D-biomaterial scaffolds with aligned architecture are of vital importance in tissue regeneration. A generic method is demonstrated to produce aligned biomaterial scaffolds using the physics of directional ice freezing. Homogeneously aligned 3D silk scaffolds with high porosity and alignment are prepared. The method can be adapted to a wide range of polymers and is devoid of any chemical reactions, thus avoiding potential complications associated with by-products. Mechanical properties and cellular responses with chondrocytes and bone-marrow-derived hMSCs are studied, assessing survival, proliferation, and differentiation. In vivo tests suggest biocompatibility of the matrices for future tissue engineering applications, specifically in areas where high cellular alignment is needed.

摘要

具有定向结构的 3D 生物材料支架在组织再生中具有重要意义。本文展示了一种通用方法,利用定向冰冻结的物理原理来制备定向生物材料支架。制备了具有高孔隙率和定向排列的均匀定向 3D 丝素支架。该方法可适用于多种聚合物,且不涉及任何化学反应,从而避免了与副产物相关的潜在并发症。研究了与软骨细胞和骨髓来源的 hMSCs 的机械性能和细胞反应,评估了细胞的存活率、增殖和分化。体内实验表明,该支架具有良好的生物相容性,可用于未来的组织工程应用,特别是在需要高细胞定向排列的区域。

相似文献

1
Laminar silk scaffolds for aligned tissue fabrication.
Macromol Biosci. 2013 Jan;13(1):48-58. doi: 10.1002/mabi.201200230. Epub 2012 Nov 19.
2
In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
Biomaterials. 2005 Dec;26(34):7082-94. doi: 10.1016/j.biomaterials.2005.05.022.
3
Aligned silk-based 3-D architectures for contact guidance in tissue engineering.
Acta Biomater. 2012 Apr;8(4):1530-42. doi: 10.1016/j.actbio.2011.12.015. Epub 2011 Dec 16.
4
Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds.
J Biomed Mater Res A. 2004 Oct 1;71(1):25-34. doi: 10.1002/jbm.a.30117.
5
3D fiber deposited polymeric scaffolds for external auditory canal wall.
J Mater Sci Mater Med. 2018 May 7;29(5):63. doi: 10.1007/s10856-018-6071-3.
6
Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds.
Biomaterials. 2016 Jun;91:57-72. doi: 10.1016/j.biomaterials.2016.03.012. Epub 2016 Mar 9.
7
Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells.
Biomaterials. 2005 Jul;26(21):4442-52. doi: 10.1016/j.biomaterials.2004.11.013.
9
Chemically Functionalized Silk for Human Bone Marrow-Derived Mesenchymal Stem Cells Proliferation and Differentiation.
ACS Appl Mater Interfaces. 2016 Jun 15;8(23):14406-13. doi: 10.1021/acsami.6b03518. Epub 2016 May 31.

引用本文的文献

2
Developing Porous Fibrin Scaffolds with Tunable Anisotropic Features to Direct Myoblast Orientation.
Tissue Eng Part C Methods. 2024 May;30(5):217-228. doi: 10.1089/ten.TEC.2023.0363. Epub 2024 Apr 23.
3
Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges.
Adv Sci (Weinh). 2022 Jan;9(3):e2102908. doi: 10.1002/advs.202102908. Epub 2021 Nov 16.
4
Estimating Kinetic Rate Parameters for Enzymatic Degradation of Lyophilized Silk Fibroin Sponges.
Front Bioeng Biotechnol. 2021 Jul 6;9:664306. doi: 10.3389/fbioe.2021.664306. eCollection 2021.
5
Bi-layered Tubular Microfiber Scaffolds as Functional Templates for Engineering Human Intestinal Smooth Muscle Tissue.
Adv Funct Mater. 2020 Apr 27;30(17). doi: 10.1002/adfm.202000543. Epub 2020 Feb 27.
6
Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):477-482. doi: 10.1073/pnas.1715912115. Epub 2017 Dec 27.
8
Shape Memory Silk Protein Sponges for Minimally Invasive Tissue Regeneration.
Adv Healthc Mater. 2017 Jan;6(2). doi: 10.1002/adhm.201600762. Epub 2016 Nov 8.
9
Fabrication of anatomically-shaped cartilage constructs using decellularized cartilage-derived matrix scaffolds.
Biomaterials. 2016 Jun;91:57-72. doi: 10.1016/j.biomaterials.2016.03.012. Epub 2016 Mar 9.
10
The effect of sterilization on silk fibroin biomaterial properties.
Macromol Biosci. 2015 Jun;15(6):861-74. doi: 10.1002/mabi.201500013. Epub 2015 Mar 11.

本文引用的文献

1
Stem cell-based meniscus tissue engineering.
Tissue Eng Part A. 2011 Nov;17(21-22):2749-61. doi: 10.1089/ten.TEA.2011.0031. Epub 2011 Aug 2.
2
A 3D aligned microfibrous myocardial tissue construct cultured under transient perfusion.
Biomaterials. 2011 Aug;32(23):5320-9. doi: 10.1016/j.biomaterials.2011.04.025. Epub 2011 May 12.
3
Multilayered silk scaffolds for meniscus tissue engineering.
Biomaterials. 2011 Jan;32(2):639-51. doi: 10.1016/j.biomaterials.2010.08.115. Epub 2010 Oct 6.
4
New opportunities for an ancient material.
Science. 2010 Jul 30;329(5991):528-31. doi: 10.1126/science.1188936.
5
Electrospinning: a fascinating fiber fabrication technique.
Biotechnol Adv. 2010 May-Jun;28(3):325-47. doi: 10.1016/j.biotechadv.2010.01.004. Epub 2010 Jan 25.
6
Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus.
Nat Mater. 2009 Dec;8(12):986-92. doi: 10.1038/nmat2558. Epub 2009 Oct 25.
7
Preparation of aligned porous gelatin scaffolds by unidirectional freeze-drying method.
Acta Biomater. 2010 Mar;6(3):1167-77. doi: 10.1016/j.actbio.2009.08.041. Epub 2009 Sep 4.
8
Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
Biomaterials. 2009 Oct;30(28):5019-30. doi: 10.1016/j.biomaterials.2009.05.064. Epub 2009 Jul 3.
9
Silk as a Biomaterial.
Prog Polym Sci. 2007;32(8-9):991-1007. doi: 10.1016/j.progpolymsci.2007.05.013.
10
Complexity in biomaterials for tissue engineering.
Nat Mater. 2009 Jun;8(6):457-70. doi: 10.1038/nmat2441.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验