Suppr超能文献

基于丝素的多层角叉菜聚糖纤维环构建体,以再现椎间盘的形态和功能。

Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc.

机构信息

Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.

Department of Biomedical Engineering, Tufts University, Medford, MA 02155

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):477-482. doi: 10.1073/pnas.1715912115. Epub 2017 Dec 27.

Abstract

Recapitulation of the form and function of complex tissue organization using appropriate biomaterials impacts success in tissue engineering endeavors. The annulus fibrosus (AF) represents a complex, multilamellar, hierarchical structure consisting of collagen, proteoglycans, and elastic fibers. To mimic the intricacy of AF anatomy, a silk protein-based multilayered, disc-like angle-ply construct was fabricated, consisting of concentric layers of lamellar sheets. Scanning electron microscopy and fluorescence image analysis revealed cross-aligned and lamellar characteristics of the construct, mimicking the native hierarchical architecture of the AF. Induction of secondary structure in the silk constructs was confirmed by infrared spectroscopy and X-ray diffraction. The constructs showed a compressive modulus of 499.18 ± 86.45 kPa. Constructs seeded with porcine AF cells and human mesenchymal stem cells (hMSCs) showed ∼2.2-fold and ∼1.7-fold increases in proliferation on day 14, respectively, compared with initial seeding. Biochemical analysis, histology, and immunohistochemistry results showed the deposition of AF-specific extracellular matrix (sulfated glycosaminoglycan and collagen type I), indicating a favorable environment for both cell types, which was further validated by the expression of AF tissue-specific genes. The constructs seeded with porcine AF cells showed ∼11-, ∼5.1-, and ∼6.7-fold increases in col I, sox 9, and aggrecan genes, respectively. The differentiation of hMSCs to AF-like tissue was evident from the enhanced expression of the AF-specific genes. Overall, the constructs supported cell proliferation, differentiation, and ECM deposition resulting in AF-like tissue features based on ECM deposition and morphology, indicating potential for future studies related to intervertebral disc replacement therapy.

摘要

使用适当的生物材料来概括复杂组织的形态和功能对组织工程的成功有重要影响。纤维环(AF)是一种复杂的、多层的、层次结构,由胶原蛋白、蛋白聚糖和弹性纤维组成。为了模拟 AF 解剖结构的复杂性,构建了一种基于丝蛋白的多层、盘状角层结构,由同心层的片状层组成。扫描电子显微镜和荧光图像分析显示了构建体的交叉排列和层状特征,模拟了 AF 的天然层次结构。红外光谱和 X 射线衍射证实了丝蛋白构建体中二级结构的诱导。构建体的压缩模量为 499.18±86.45kPa。与初始接种相比,接种猪 AF 细胞和人骨髓间充质干细胞(hMSCs)的构建体在第 14 天的增殖分别增加了约 2.2 倍和 1.7 倍。生物化学分析、组织学和免疫组织化学结果表明,构建体中沉积了 AF 特异性细胞外基质(硫酸化糖胺聚糖和 I 型胶原蛋白),表明这为两种细胞类型提供了有利的环境,这进一步通过 AF 组织特异性基因的表达得到了验证。接种猪 AF 细胞的构建体中 col I、sox9 和 aggrecan 基因的表达分别增加了约 11 倍、5.1 倍和 6.7 倍。hMSCs 向 AF 样组织的分化从 AF 特异性基因的增强表达中可见一斑。总的来说,这些构建体支持细胞增殖、分化和细胞外基质沉积,导致基于细胞外基质沉积和形态的 AF 样组织特征,表明其在未来与椎间盘置换治疗相关的研究中有潜在应用。

相似文献

1
Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc.
Proc Natl Acad Sci U S A. 2018 Jan 16;115(3):477-482. doi: 10.1073/pnas.1715912115. Epub 2017 Dec 27.
2
Biomimetic angle-ply multi-lamellar scaffold for annulus fibrosus tissue engineering.
J Mater Sci Mater Med. 2020 Jul 23;31(8):67. doi: 10.1007/s10856-020-06404-7.
3
Porous silk scaffolds can be used for tissue engineering annulus fibrosus.
Eur Spine J. 2007 Nov;16(11):1848-57. doi: 10.1007/s00586-007-0364-4. Epub 2007 Apr 20.
7
A Polycaprolactone (PCL)-Supported Electrocompacted Aligned Collagen Type-I Patch for Annulus Fibrosus Repair and Regeneration.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1238-1251. doi: 10.1021/acsabm.0c01084. Epub 2021 Jan 11.
9
Decellularized Annulus Fibrosus Matrix/Chitosan Hybrid Hydrogels with Basic Fibroblast Growth Factor for Annulus Fibrosus Tissue Engineering.
Tissue Eng Part A. 2019 Dec;25(23-24):1605-1613. doi: 10.1089/ten.TEA.2018.0297. Epub 2019 Nov 21.
10
Construction of a tissue-engineered annulus fibrosus.
Artif Organs. 2013 Jul;37(7):E131-8. doi: 10.1111/aor.12066. Epub 2013 Apr 29.

引用本文的文献

1
Regenerative strategies for intervertebral disc degeneration.
J Orthop Translat. 2025 Jul 4;53:286-308. doi: 10.1016/j.jot.2025.06.003. eCollection 2025 Jul.
3
Textile Design of an Intervertebral Disc Replacement Device from Silk Yarn.
Biomimetics (Basel). 2023 Apr 12;8(2):152. doi: 10.3390/biomimetics8020152.
4
Biomechanical evaluation of a novel intervertebral disc repair technique for large box-shaped ruptures.
Front Bioeng Biotechnol. 2023 Feb 8;11:1104015. doi: 10.3389/fbioe.2023.1104015. eCollection 2023.
5
Biomedical applications of silk and its role for intervertebral disc repair.
JOR Spine. 2022 Oct 6;5(4):e1225. doi: 10.1002/jsp2.1225. eCollection 2022 Dec.
6
Fabrication of a novel whole tissue-engineered intervertebral disc for intervertebral disc regeneration in the porcine lumbar spine.
RSC Adv. 2018 Nov 20;8(68):39013-39021. doi: 10.1039/c8ra06943c. eCollection 2018 Nov 16.
7
Cell sources proposed for nucleus pulposus regeneration.
JOR Spine. 2021 Nov 24;4(4):e1175. doi: 10.1002/jsp2.1175. eCollection 2021 Dec.
9
Advances and Prospects in Biomaterials for Intervertebral Disk Regeneration.
Front Bioeng Biotechnol. 2021 Oct 22;9:766087. doi: 10.3389/fbioe.2021.766087. eCollection 2021.
10
Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies.
Front Bioeng Biotechnol. 2021 Jul 20;9:592118. doi: 10.3389/fbioe.2021.592118. eCollection 2021.

本文引用的文献

1
Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.
Biomed Mater. 2016 Apr 12;11(2):025014. doi: 10.1088/1748-6041/11/2/025014.
2
Mesenchymal stem cells: potential application in intervertebral disc regeneration.
Transl Pediatr. 2014 Apr;3(2):71-90. doi: 10.3978/j.issn.2224-4336.2014.03.05.
3
Silk structure and degradation.
Colloids Surf B Biointerfaces. 2015 Jul 1;131:122-8. doi: 10.1016/j.colsurfb.2015.04.040. Epub 2015 Apr 24.
4
Strategies for replicating anatomical cartilaginous tissue gradient in engineered intervertebral disc.
ACS Appl Mater Interfaces. 2014 Jan 8;6(1):183-93. doi: 10.1021/am403835t. Epub 2013 Dec 23.
5
Challenges and strategies in the repair of ruptured annulus fibrosus.
Eur Cell Mater. 2013 Jan 2;25:1-21. doi: 10.22203/ecm.v025a01.
6
Laminar silk scaffolds for aligned tissue fabrication.
Macromol Biosci. 2013 Jan;13(1):48-58. doi: 10.1002/mabi.201200230. Epub 2012 Nov 19.
7
Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering.
Acta Biomater. 2012 Sep;8(9):3313-25. doi: 10.1016/j.actbio.2012.05.023. Epub 2012 May 27.
8
High-strength silk protein scaffolds for bone repair.
Proc Natl Acad Sci U S A. 2012 May 15;109(20):7699-704. doi: 10.1073/pnas.1119474109. Epub 2012 May 2.
9
Annulus fibrosus tissue engineering using lamellar silk scaffolds.
J Tissue Eng Regen Med. 2012 Dec;6 Suppl 3(Suppl 3):s24-33. doi: 10.1002/term.541. Epub 2012 Feb 6.
10
Intervertebral disk tissue engineering using biphasic silk composite scaffolds.
Tissue Eng Part A. 2012 Mar;18(5-6):447-58. doi: 10.1089/ten.TEA.2011.0195. Epub 2011 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验