Suppr超能文献

人脸识别有多快?

How Fast is Famous Face Recognition?

机构信息

Centre de Recherche Cerveau et Cognition, Université de Toulouse, CNRS-UMR 5549 Toulouse, France.

出版信息

Front Psychol. 2012 Oct 30;3:454. doi: 10.3389/fpsyg.2012.00454. eCollection 2012.

Abstract

The rapid recognition of familiar faces is crucial for social interactions. However the actual speed with which recognition can be achieved remains largely unknown as most studies have been carried out without any speed constraints. Different paradigms have been used, leading to conflicting results, and although many authors suggest that face recognition is fast, the speed of face recognition has not been directly compared to "fast" visual tasks. In this study, we sought to overcome these limitations. Subjects performed three tasks, a familiarity categorization task (famous faces among unknown faces), a superordinate categorization task (human faces among animal ones), and a gender categorization task. All tasks were performed under speed constraints. The results show that, despite the use of speed constraints, subjects were slow when they had to categorize famous faces: minimum reaction time was 467 ms, which is 180 ms more than during superordinate categorization and 160 ms more than in the gender condition. Our results are compatible with a hierarchy of face processing from the superordinate level to the familiarity level. The processes taking place between detection and recognition need to be investigated in detail.

摘要

快速识别熟悉的面孔对于社交互动至关重要。然而,由于大多数研究都没有任何速度限制,因此实际能够实现的识别速度在很大程度上仍是未知的。不同的范式被用于研究,导致了相互矛盾的结果,尽管许多作者认为面孔识别速度很快,但面孔识别的速度尚未与“快速”视觉任务进行直接比较。在这项研究中,我们试图克服这些限制。被试者执行了三个任务,一个是熟悉度分类任务(在未知面孔中识别名人面孔),一个是超类别分类任务(在动物面孔中识别人类面孔),以及一个性别分类任务。所有任务都在速度限制下进行。结果表明,尽管使用了速度限制,但被试在对名人面孔进行分类时速度较慢:最小反应时间为 467ms,比超类别分类时慢 180ms,比性别分类时慢 160ms。我们的结果与从超类别水平到熟悉度水平的面孔处理层次结构是一致的。需要详细研究检测和识别之间发生的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a0b/3498873/1032a05acc39/fpsyg-03-00454-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验