Suppr超能文献

芬纳-马修斯-奥尔森光捕获蛋白的光谱密度的正常模式分析:该蛋白如何耗散激子的过剩能量。

Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons.

机构信息

Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria.

出版信息

J Phys Chem B. 2012 Dec 20;116(50):14565-80. doi: 10.1021/jp3094935. Epub 2012 Dec 10.

Abstract

We report a method for the structure-based calculation of the spectral density of the pigment-protein coupling in light-harvesting complexes that combines normal-mode analysis with the charge density coupling (CDC) and transition charge from electrostatic potential (TrEsp) methods for the computation of site energies and excitonic couplings, respectively. The method is applied to the Fenna-Matthews-Olson (FMO) protein in order to investigate the influence of the different parts of the spectral density as well as correlations among these contributions on the energy transfer dynamics and on the temperature-dependent decay of coherences. The fluctuations and correlations in excitonic couplings as well as the correlations between coupling and site energy fluctuations are found to be 1 order of magnitude smaller in amplitude than the site energy fluctuations. Despite considerable amplitudes of that part of the spectral density which contains correlations in site energy fluctuations, the effect of these correlations on the exciton population dynamics and dephasing of coherences is negligible. The inhomogeneous charge distribution of the protein, which causes variations in local pigment-protein coupling constants of the normal modes, is responsible for this effect. It is seen thereby that the same building principle that is used by nature to create an excitation energy funnel in the FMO protein also allows for efficient dissipation of the excitons' excess energy.

摘要

我们报告了一种基于结构的方法,用于计算光捕获复合物中色素-蛋白偶联的光谱密度,该方法结合了模态分析与电荷密度耦合(CDC)和静电势跃迁电荷(TrEsp)方法,分别用于计算位点能量和激子耦合。该方法应用于 Fenna-Matthews-Olson(FMO)蛋白,以研究光谱密度的不同部分以及这些贡献之间的相关性对能量转移动力学和相干温度依赖性衰减的影响。发现,在激子耦合的波动和相关性以及耦合与位点能量波动之间的相关性的幅度上,比位点能量波动小 1 个数量级。尽管包含了位点能量波动相关性的那部分光谱密度的幅度相当大,但这些相关性对激子群体动力学和相干去相位的影响可以忽略不计。蛋白质的不均匀电荷分布导致了正常模式中局部色素-蛋白偶联常数的变化,这就是造成这种影响的原因。由此可见,自然界用于在 FMO 蛋白中创建激发能量漏斗的相同构建原则也允许有效地耗散激子的多余能量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f703/3557933/ac5572bc18cf/jp-2012-094935_0002.jpg

相似文献

3
The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description.
Chemphyschem. 2014 Oct 20;15(15):3194-204. doi: 10.1002/cphc.201402244. Epub 2014 Jul 30.
4
On uncorrelated inter-monomer Förster energy transfer in Fenna-Matthews-Olson complexes.
J R Soc Interface. 2019 Feb 28;16(151):20180882. doi: 10.1098/rsif.2018.0882.
5
Multipartite entanglement in the Fenna-Matthews-Olson (FMO) pigment-protein complex.
J Chem Phys. 2012 May 7;136(17):175104. doi: 10.1063/1.4705396.
6
Calculation of pigment transition energies in the FMO protein: from simplicity to complexity and back.
Photosynth Res. 2008 Feb-Mar;95(2-3):197-209. doi: 10.1007/s11120-007-9248-z. Epub 2007 Oct 5.
7
FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method.
J Chem Theory Comput. 2020 Feb 11;16(2):1175-1187. doi: 10.1021/acs.jctc.9b00621. Epub 2020 Jan 9.
8
Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna-Matthews-Olson Protein.
J Phys Chem B. 2019 Nov 21;123(46):9762-9772. doi: 10.1021/acs.jpcb.9b07456. Epub 2019 Nov 12.
9
Origin of long-lived coherences in light-harvesting complexes.
J Phys Chem B. 2012 Jun 28;116(25):7449-54. doi: 10.1021/jp304649c. Epub 2012 Jun 14.
10
Simulated two-dimensional electronic spectroscopy of the eight-bacteriochlorophyll FMO complex.
J Chem Phys. 2014 Dec 21;141(23):234105. doi: 10.1063/1.4903546.

引用本文的文献

1
Theoretical Study on the Excitation Energy Transfer Dynamics in the Phycoerythrin PE555 Light-Harvesting Complex.
ACS Omega. 2024 Dec 16;9(52):51228-51236. doi: 10.1021/acsomega.4c07445. eCollection 2024 Dec 31.
2
Temporal witnesses of non-classicality in a macroscopic biological system.
Sci Rep. 2024 Aug 29;14(1):20094. doi: 10.1038/s41598-024-66159-x.
3
Coarse-Grained Approach to Simulate Signatures of Excitation Energy Transfer in Two-Dimensional Electronic Spectroscopy of Large Molecular Systems.
J Chem Theory Comput. 2024 Jul 23;20(14):6111-6124. doi: 10.1021/acs.jctc.4c00413. Epub 2024 Jul 12.
4
Living on the edge: light-harvesting efficiency and photoprotection in the core of green sulfur bacteria.
Phys Chem Chem Phys. 2023 Jul 19;25(28):18698-18710. doi: 10.1039/d3cp01321a.
5
Recent progress in atomistic modeling of light-harvesting complexes: a mini review.
Photosynth Res. 2023 Apr;156(1):147-162. doi: 10.1007/s11120-022-00969-w. Epub 2022 Oct 7.
8
Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment.
J Phys Chem Lett. 2020 Dec 17;11(24):10306-10314. doi: 10.1021/acs.jpclett.0c03123. Epub 2020 Nov 23.
9
Quantum biology revisited.
Sci Adv. 2020 Apr 3;6(14):eaaz4888. doi: 10.1126/sciadv.aaz4888. eCollection 2020 Apr.
10
Structural basis of light-harvesting in the photosystem II core complex.
Protein Sci. 2020 May;29(5):1090-1119. doi: 10.1002/pro.3841. Epub 2020 Feb 24.

本文引用的文献

1
The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein.
J Phys Chem Lett. 2011 Jan 20;2(2):93-8. doi: 10.1021/jz101541b. Epub 2010 Dec 23.
2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Spectra and dynamics in the B800 antenna: comparing hierarchical equations, Redfield and Förster theories.
J Phys Chem B. 2013 Sep 26;117(38):11076-90. doi: 10.1021/jp400957t. Epub 2013 Apr 11.
5
Molecular vibrations-induced quantum beats in two-dimensional electronic spectroscopy.
J Chem Phys. 2012 Jul 28;137(4):044513. doi: 10.1063/1.4737843.
6
All-atom semiclassical dynamics study of quantum coherence in photosynthetic Fenna-Matthews-Olson complex.
J Am Chem Soc. 2012 Jul 18;134(28):11640-51. doi: 10.1021/ja303025q. Epub 2012 Jul 5.
7
Origin of long-lived coherences in light-harvesting complexes.
J Phys Chem B. 2012 Jun 28;116(25):7449-54. doi: 10.1021/jp304649c. Epub 2012 Jun 14.
8
The nature of the low energy band of the Fenna-Matthews-Olson complex: vibronic signatures.
J Chem Phys. 2012 Apr 21;136(15):155102. doi: 10.1063/1.3703504.
10
Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex.
Biophys J. 2012 Feb 8;102(3):649-60. doi: 10.1016/j.bpj.2011.12.021. Epub 2012 Feb 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验