Suppr超能文献

生活在边缘:绿硫细菌核心中的光捕获效率和光保护。

Living on the edge: light-harvesting efficiency and photoprotection in the core of green sulfur bacteria.

机构信息

Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria.

出版信息

Phys Chem Chem Phys. 2023 Jul 19;25(28):18698-18710. doi: 10.1039/d3cp01321a.

Abstract

Photosynthetic green sulfur bacteria are able to survive under extreme low light conditions. Nevertheless, the light-harvesting efficiencies reported so far, in particular for Fenna-Matthews-Olson (FMO) protein-reaction center complex (RCC) supercomplexes, are much lower than for photosystems of other species. Here, we approach this problem with a structure-based theory. Compelling evidence for a light-harvesting efficiency around 95% is presented for native (anaerobic) conditions that can drop down to 47% when the FMO protein is switched into a photoprotective mode in the presence of molecular oxygen. Light-harvesting bottlenecks are found between the FMO protein and the RCC, and the antenna of the RCC and its reaction center (RC) with forward energy transfer time constants of 39 ps and 23 ps, respectively. The latter time constant removes an ambiguity in the interpretation of time-resolved spectra of RCC probing primary charge transfer and provides strong evidence for a transfer-to-the trap limited kinetics of excited states. Different factors influencing the light-harvesting efficiency are investigated. A fast primary electron transfer in the RC is found to be more important for a high efficiency than the site energy funnel in the FMO protein, quantum effects of nuclear motion, or variations in the mutual orientation between the FMO protein and the RCC.

摘要

光合绿色硫细菌能够在极端低光条件下生存。然而,迄今为止报道的光捕获效率,特别是对于 Fenna-Matthews-Olson (FMO) 蛋白-反应中心复合物 (RCC) 超复合物,远低于其他物种的光合作用系统。在这里,我们用基于结构的理论来解决这个问题。对于原生(厌氧)条件,提出了令人信服的证据表明光捕获效率约为 95%,当 FMO 蛋白在分子氧存在下切换到光保护模式时,光捕获效率可降至 47%。在 FMO 蛋白和 RCC 之间,以及 RCC 的天线与其反应中心 (RC) 之间发现了光捕获瓶颈,向前能量转移的时间常数分别为 39 ps 和 23 ps。后一时间常数消除了对探测初级电荷转移的 RCC 时间分辨光谱的解释中的歧义,并为激发态的转移到陷阱限制动力学提供了强有力的证据。研究了影响光捕获效率的不同因素。发现 RC 中的快速初级电子转移对于高效率比 FMO 蛋白中的位能漏斗更重要,核运动的量子效应或 FMO 蛋白与 RCC 之间的相互取向变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f31/10355171/6873bbf9bf43/d3cp01321a-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验