Department of Chemical Physics, Lund University, Box 124, 22100 Lund, Sweden.
Nano Lett. 2012 Dec 12;12(12):6393-9. doi: 10.1021/nl303746d. Epub 2012 Nov 26.
We study multiple electron transfer from a CdSe quantum dot (QD) to ZnO, which is a prerequisite for successful utilization of multiple exciton generation for photovoltaics. By using ultrafast time-resolved spectroscopy we observe competition between electron injection into ZnO and quenching of multiexcitons via Auger recombination. We show that fast electron injection dominates over biexcitonic Auger recombination and multiple electrons can be transferred into ZnO. A kinetic component with time constant of a few tens of picoseconds was identified as the competition between injection of the second electron from a doubly excited QD and a trion Auger recombination. Moreover, we demonstrate that the multiexciton harvesting efficiency changes significantly with QD size. Within a narrow QD diameter range from 2 to 4 nm, the efficiency of electron injection from a doubly excited QD can vary from 30% to 70% in our system.
我们研究了从 CdSe 量子点 (QD) 到 ZnO 的多个电子转移,这是成功利用多激子产生用于光伏的前提。通过使用超快时间分辨光谱学,我们观察到电子注入 ZnO 和通过俄歇复合猝灭多激子之间的竞争。我们表明,快速电子注入胜过双激子俄歇复合,并且可以将多个电子转移到 ZnO 中。具有几十皮秒时间常数的动力学分量被确定为从双激发 QD 注入第二个电子和三电子俄歇复合之间的竞争。此外,我们证明了多激子的收集效率随 QD 尺寸显著变化。在 2 到 4nm 的狭窄 QD 直径范围内,在我们的系统中,从双激发 QD 注入电子的效率可以从 30%变化到 70%。