Kim Taehee, Won Yu-Ho, Jang Eunjoo, Kim Dongho
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Samsung Advanced Institute of Technology, Samsung Electronics, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea.
Nano Lett. 2021 Mar 10;21(5):2111-2116. doi: 10.1021/acs.nanolett.0c04740. Epub 2021 Feb 26.
Upon demonstrating self-luminescing quantum dot based light-emitting devices (QD-LEDs), rapid Auger recombination acts as one of the performance limiting factors. Here, we report the Auger processes of highly luminescent InP/ZnSe/ZnS QDs with different midshell structures that affect the performances of QD-LEDs. Transient PL measurements reveal that exciton-exciton binding energy is dependent on the midshell thickness, which implies that the intercarrier Coulomb interaction caused by the introduction of excess charges may come under the influence of midshell thickness which is in contrast with the nearly stationary single exciton behavior. Photochemical electron-doping and optical measurements of a single QD show that negative trion Auger recombination exhibits strong correlation with midshell thickness, which is supported by the dynamics of a hot electron generated in the midshell. These results highlight the role of excess electrons and the effects of engineered shell structures in InP/ZnSe/ZnS QDs, which eventually determine the Auger recombination and QD-LED performances.
在展示基于自发光量子点的发光器件(量子点发光二极管,QD-LED)时,快速俄歇复合是性能限制因素之一。在此,我们报告了具有不同中间壳层结构的高发光InP/ZnSe/ZnS量子点的俄歇过程,这些结构会影响量子点发光二极管的性能。瞬态光致发光测量表明,激子-激子结合能取决于中间壳层厚度,这意味着由过量电荷引入引起的载流子间库仑相互作用可能受到中间壳层厚度的影响,这与几乎静止的单激子行为形成对比。单个量子点的光化学电子掺杂和光学测量表明,负三重态俄歇复合与中间壳层厚度呈现出强相关性,这得到了中间壳层中产生的热电子动力学的支持。这些结果突出了过量电子的作用以及InP/ZnSe/ZnS量子点中工程化壳层结构的影响,最终决定了俄歇复合和量子点发光二极管的性能。