Department of Psychology.
J Exp Psychol Gen. 2013 Nov;142(4):1047-73. doi: 10.1037/a0030543. Epub 2012 Nov 19.
The cognitive concept of response inhibition can be measured with the stop-signal paradigm. In this paradigm, participants perform a 2-choice response time (RT) task where, on some of the trials, the primary task is interrupted by a stop signal that prompts participants to withhold their response. The dependent variable of interest is the latency of the unobservable stop response (stop-signal reaction time, or SSRT). Based on the horse race model (Logan & Cowan, 1984), several methods have been developed to estimate SSRTs. None of these approaches allow for the accurate estimation of the entire distribution of SSRTs. Here we introduce a Bayesian parametric approach that addresses this limitation. Our method is based on the assumptions of the horse race model and rests on the concept of censored distributions. We treat response inhibition as a censoring mechanism, where the distribution of RTs on the primary task (go RTs) is censored by the distribution of SSRTs. The method assumes that go RTs and SSRTs are ex-Gaussian distributed and uses Markov chain Monte Carlo sampling to obtain posterior distributions for the model parameters. The method can be applied to individual as well as hierarchical data structures. We present the results of a number of parameter recovery and robustness studies and apply our approach to published data from a stop-signal experiment.
反应抑制的认知概念可以通过停止信号范式来衡量。在这个范式中,参与者执行一个 2 选择反应时间 (RT) 任务,在某些试验中,主任务会被停止信号打断,提示参与者抑制他们的反应。感兴趣的因变量是不可观察的停止反应的潜伏期(停止信号反应时间,或 SSRT)。基于赛马模型(Logan & Cowan,1984),已经开发了几种方法来估计 SSRT。这些方法都不能准确估计 SSRT 的整个分布。在这里,我们引入了一种贝叶斯参数方法来解决这个限制。我们的方法基于赛马模型的假设,并基于被屏蔽分布的概念。我们将反应抑制视为一种屏蔽机制,其中主任务(Go RTs)的 RT 分布由 SSRT 分布屏蔽。该方法假设 Go RTs 和 SSRTs 是超高斯分布的,并使用马尔可夫链蒙特卡罗抽样来获得模型参数的后验分布。该方法可以应用于个体和层次数据结构。我们展示了一些参数恢复和鲁棒性研究的结果,并将我们的方法应用于停止信号实验的已发表数据。