Suppr超能文献

释放 BEESTS:贝叶斯估计外高斯停止信号反应时间分布。

Release the BEESTS: Bayesian Estimation of Ex-Gaussian STop-Signal reaction time distributions.

机构信息

Department of Psychological Methods, University of Amsterdam Amsterdam, Netherlands.

出版信息

Front Psychol. 2013 Dec 10;4:918. doi: 10.3389/fpsyg.2013.00918. eCollection 2013.

Abstract

The stop-signal paradigm is frequently used to study response inhibition. In this paradigm, participants perform a two-choice response time (RT) task where the primary task is occasionally interrupted by a stop-signal that prompts participants to withhold their response. The primary goal is to estimate the latency of the unobservable stop response (stop signal reaction time or SSRT). Recently, Matzke et al. (2013) have developed a Bayesian parametric approach (BPA) that allows for the estimation of the entire distribution of SSRTs. The BPA assumes that SSRTs are ex-Gaussian distributed and uses Markov chain Monte Carlo sampling to estimate the parameters of the SSRT distribution. Here we present an efficient and user-friendly software implementation of the BPA-BEESTS-that can be applied to individual as well as hierarchical stop-signal data. BEESTS comes with an easy-to-use graphical user interface and provides users with summary statistics of the posterior distribution of the parameters as well various diagnostic tools to assess the quality of the parameter estimates. The software is open source and runs on Windows and OS X operating systems. In sum, BEESTS allows experimental and clinical psychologists to estimate entire distributions of SSRTs and hence facilitates the more rigorous analysis of stop-signal data.

摘要

停止信号范式常用于研究反应抑制。在该范式中,参与者执行一个两选择反应时间(RT)任务,其中主要任务偶尔会被停止信号打断,提示参与者抑制他们的反应。主要目标是估计不可观察的停止反应的潜伏期(停止信号反应时间或 SSRT)。最近,Matzke 等人(2013)开发了一种贝叶斯参数方法(BPA),允许估计整个 SSRT 分布。BPA 假设 SSRT 呈外高斯分布,并使用马尔可夫链蒙特卡罗采样来估计 SSRT 分布的参数。这里我们提出了一种高效且用户友好的 BPA-BEESTS 的软件实现,可以应用于个体和分层停止信号数据。BEESTS 带有一个易于使用的图形用户界面,并为用户提供参数后验分布的摘要统计信息以及各种诊断工具,以评估参数估计的质量。该软件是开源的,可在 Windows 和 OS X 操作系统上运行。总之,BEESTS 允许实验和临床心理学家估计 SSRT 的整个分布,从而促进对停止信号数据的更严格分析。

相似文献

1
Release the BEESTS: Bayesian Estimation of Ex-Gaussian STop-Signal reaction time distributions.
Front Psychol. 2013 Dec 10;4:918. doi: 10.3389/fpsyg.2013.00918. eCollection 2013.
2
Bayesian parametric estimation of stop-signal reaction time distributions.
J Exp Psychol Gen. 2013 Nov;142(4):1047-73. doi: 10.1037/a0030543. Epub 2012 Nov 19.
3
A Bayesian approach for estimating the probability of trigger failures in the stop-signal paradigm.
Behav Res Methods. 2017 Feb;49(1):267-281. doi: 10.3758/s13428-015-0695-8.
6
Failing to attend versus failing to stop: Single-trial decomposition of action-stopping in the stop signal task.
Behav Res Methods. 2023 Dec;55(8):4099-4117. doi: 10.3758/s13428-022-02008-x. Epub 2022 Nov 7.
7
Reconsidering electrophysiological markers of response inhibition in light of trigger failures in the stop-signal task.
Psychophysiology. 2020 Oct;57(10):e13619. doi: 10.1111/psyp.13619. Epub 2020 Jul 29.
9
Face the (trigger) failure: Trigger failures strongly drive the effect of reward on response inhibition.
Cortex. 2021 Jun;139:166-177. doi: 10.1016/j.cortex.2021.02.025. Epub 2021 Mar 29.
10
Reliable estimation of inhibitory efficiency: to anticipate, choose or simply react?
Eur J Neurosci. 2017 Jun;45(12):1512-1523. doi: 10.1111/ejn.13590. Epub 2017 Jun 2.

引用本文的文献

1
A Preparatory Cranial Potential for Saccadic Eye Movements in Macaque Monkeys.
eNeuro. 2025 Apr 1;12(4). doi: 10.1523/ENEURO.0023-25.2025. Print 2025 Apr.
2
A preparatory cranial potential for saccadic eye movements in macaque monkeys.
bioRxiv. 2025 Jan 16:2025.01.16.633363. doi: 10.1101/2025.01.16.633363.
3
Inhibitory deficits in Klinefelter syndrome are secondary to deficits in the auditory and motor domain.
Neuroimage Clin. 2024;44:103674. doi: 10.1016/j.nicl.2024.103674. Epub 2024 Sep 19.
6
No effects of 1 Hz offline TMS on performance in the stop-signal game.
Sci Rep. 2023 Jul 18;13(1):11565. doi: 10.1038/s41598-023-38841-z.
7
Comparing anticipatory and stop-signal response inhibition with a novel, open-source selective stopping toolbox.
Exp Brain Res. 2023 Feb;241(2):601-613. doi: 10.1007/s00221-022-06539-9. Epub 2023 Jan 13.
8
Failing to attend versus failing to stop: Single-trial decomposition of action-stopping in the stop signal task.
Behav Res Methods. 2023 Dec;55(8):4099-4117. doi: 10.3758/s13428-022-02008-x. Epub 2022 Nov 7.
10
Partial response electromyography as a marker of action stopping.
Elife. 2022 May 26;11:e70332. doi: 10.7554/eLife.70332.

本文引用的文献

2
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.
Front Neuroinform. 2013 Aug 2;7:14. doi: 10.3389/fninf.2013.00014. eCollection 2013.
3
Fictitious inhibitory differences: how skewness and slowing distort the estimation of stopping latencies.
Psychol Sci. 2013 Mar 1;24(3):352-62. doi: 10.1177/0956797612457390. Epub 2013 Feb 11.
4
Bayesian parametric estimation of stop-signal reaction time distributions.
J Exp Psychol Gen. 2013 Nov;142(4):1047-73. doi: 10.1037/a0030543. Epub 2012 Nov 19.
5
PyMC: Bayesian Stochastic Modelling in Python.
J Stat Softw. 2010 Jul;35(4):1-81.
6
Balancing cognitive demands: control adjustments in the stop-signal paradigm.
J Exp Psychol Learn Mem Cogn. 2011 Mar;37(2):392-404. doi: 10.1037/a0021800.
8
Bayesian and maximum likelihood estimation of hierarchical response time models.
Psychon Bull Rev. 2008 Dec;15(6):1209-17. doi: 10.3758/PBR.15.6.1209.
9
Models of response inhibition in the stop-signal and stop-change paradigms.
Neurosci Biobehav Rev. 2009 May;33(5):647-61. doi: 10.1016/j.neubiorev.2008.08.014. Epub 2008 Sep 4.
10
A hierarchical model for estimating response time distributions.
Psychon Bull Rev. 2005 Apr;12(2):195-223. doi: 10.3758/bf03257252.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验