Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Dr, Saskatoon, Canada.
Proteome Sci. 2012 Nov 19;10(1):68. doi: 10.1186/1477-5956-10-68.
Protein inference is an important computational step in proteomics. There exists a natural nest relationship between protein inference and peptide identification, but these two steps are usually performed separately in existing methods. We believe that both peptide identification and protein inference can be improved by exploring such nest relationship.
In this study, a feedback framework is proposed to process peptide identification reports from search engines, and an iterative method is implemented to exemplify the processing of Sequest peptide identification reports according to the framework. The iterative method is verified on two datasets with known validity of proteins and peptides, and compared with ProteinProphet and PeptideProphet. The results have shown that not only can the iterative method infer more true positive and less false positive proteins than ProteinProphet, but also identify more true positive and less false positive peptides than PeptideProphet.
The proposed iterative method implemented according to the feedback framework can unify and improve the results of peptide identification and protein inference.
蛋白质推断是蛋白质组学中的一个重要计算步骤。在蛋白质推断和肽鉴定之间存在着一种自然的嵌套关系,但在现有方法中,这两个步骤通常是分开进行的。我们相信通过探索这种嵌套关系,既能改进肽鉴定,也能改进蛋白质推断。
在这项研究中,提出了一个反馈框架来处理搜索引擎的肽鉴定报告,并实现了一种迭代方法,根据该框架来举例说明处理 Sequest 肽鉴定报告的过程。该迭代方法在两个具有已知蛋白质和肽有效性的数据集上进行了验证,并与 ProteinProphet 和 PeptideProphet 进行了比较。结果表明,与 ProteinProphet 相比,该迭代方法不仅可以推断出更多的真正阳性蛋白和更少的假阳性蛋白,而且可以鉴定出更多的真正阳性肽和更少的假阳性肽。
根据反馈框架实现的所提出的迭代方法可以统一和改进肽鉴定和蛋白质推断的结果。