Suppr超能文献

主磁场漂移导致的磁共振波谱成像中的定位误差及其校正。

Localization errors in MR spectroscopic imaging due to the drift of the main magnetic field and their correction.

作者信息

Tal Assaf, Gonen Oded

机构信息

Department of Radiology, New York University School of Medicine, 660 First Avenue, New York, New York, USA.

出版信息

Magn Reson Med. 2013 Oct;70(4):895-904. doi: 10.1002/mrm.24536. Epub 2012 Nov 19.

Abstract

PURPOSE

To analyze the effect of B0 field drift on multivoxel MR spectroscopic imaging and to propose an approach for its correction.

THEORY AND METHODS

It is shown, both theoretically and in a phantom, that for ∼30 min acquisitions a linear B0 drift (∼0.1 ppm/h) will cause localization errors that can reach several voxels (centimeters) in the slower varying phase encoding directions. An efficient and unbiased estimator is proposed for tracking the drift by interleaving short (∼ T2*), nonlocalized acquisitions on the nonsuppressed water each pulse repetition time, as shown in 10 volunteers at 1.5 and 3 T.

RESULTS

The drift is shown to be predominantly linear in both the phantom and volunteers at both fields. The localization errors are observed and quantified in both phantom and volunteers. The unbiased estimator is shown to reliably track the instantaneous frequency in vivo despite only using a small portion of the FID.

CONCLUSION

Contrary to single-voxel MR spectroscopy, where it leads to line broadening, field drift can lead to localization errors in the longer chemical shift imaging experiments. Fortunately, this drift can be obtained at a negligible cost to sequence timing, and corrected for in post processing.

摘要

目的

分析B0场漂移对多体素磁共振波谱成像的影响,并提出一种校正方法。

理论与方法

理论上和在体模中均表明,对于约30分钟的采集,线性B0漂移(约0.1 ppm/h)会导致定位误差,在变化较慢的相位编码方向上,该误差可达数个体素(厘米)。通过在每个脉冲重复时间对未抑制的水进行短时间(约T2*)、非定位采集的交错方式,提出了一种有效且无偏的估计器来跟踪漂移,1.5 T和3 T场强下的10名志愿者的实验结果证明了该方法的可行性。

结果

在两个场强下的体模和志愿者中,漂移均主要呈线性。在体模和志愿者中均观察并量化了定位误差。尽管仅使用了一小部分自由感应衰减信号,但该无偏估计器仍能可靠地跟踪体内的瞬时频率。

结论

与单体素磁共振波谱不同,在单体素磁共振波谱中,场漂移会导致谱线展宽,而在较长的化学位移成像实验中,场漂移会导致定位误差。幸运的是,这种漂移可以以对序列时间影响可忽略不计的成本获得,并在后期处理中进行校正。

相似文献

1
Localization errors in MR spectroscopic imaging due to the drift of the main magnetic field and their correction.
Magn Reson Med. 2013 Oct;70(4):895-904. doi: 10.1002/mrm.24536. Epub 2012 Nov 19.
2
Transmit Array Spatial Encoding (TRASE) using broadband WURST pulses for RF spatial encoding in inhomogeneous B0 fields.
J Magn Reson. 2016 Jul;268:36-48. doi: 10.1016/j.jmr.2016.04.005. Epub 2016 Apr 8.
3
Investigation of the influence of B drift on the performance of the PLANET method and an algorithm for drift correction.
Magn Reson Med. 2019 Nov;82(5):1725-1740. doi: 10.1002/mrm.27860. Epub 2019 Jul 17.
4
A Post-processing framework for localized 2D MR spectroscopy in vivo.
Magn Reson Med Sci. 2013;12(3):215-21. doi: 10.2463/mrms.2012-0086. Epub 2013 Jul 12.
6
Effects of instrumental artifacts on triple quantum filtered NMR spectra for spin I=3/2.
J Magn Reson. 2016 Jul;268:10-17. doi: 10.1016/j.jmr.2016.04.013. Epub 2016 Apr 26.
7
Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field.
MAGMA. 2006 Nov;19(5):223-36. doi: 10.1007/s10334-006-0050-2. Epub 2006 Oct 17.
10
Real-time dynamic frequency and shim correction for single-voxel magnetic resonance spectroscopy.
Magn Reson Med. 2012 Nov;68(5):1339-45. doi: 10.1002/mrm.24129. Epub 2012 Jan 3.

引用本文的文献

1
RF Heating Effects in CEST NMR with Hyperpolarized Xe Considering Different Spin Exchange Kinetics and Saturation Schemes.
Chemphyschem. 2025 Apr 14;26(8):e202401037. doi: 10.1002/cphc.202401037. Epub 2025 Feb 5.
2
A k-space-based method to measure and correct for temporal B field variations in MR temperature imaging.
Magn Reson Med. 2022 Sep;88(3):1098-1111. doi: 10.1002/mrm.29275. Epub 2022 May 16.
3
High-resolution, 3D multi-TE H MRSI using fast spatiospectral encoding and subspace imaging.
Magn Reson Med. 2022 Mar;87(3):1103-1118. doi: 10.1002/mrm.29015. Epub 2021 Nov 9.
5
Frequency drift in MR spectroscopy at 3T.
Neuroimage. 2021 Nov 1;241:118430. doi: 10.1016/j.neuroimage.2021.118430. Epub 2021 Jul 24.
8
Validating a robust double-quantum-filtered (1) H MRS lactate measurement method in high-grade brain tumours.
NMR Biomed. 2016 Oct;29(10):1420-6. doi: 10.1002/nbm.3587. Epub 2016 Aug 11.
9
Metabolic Abnormalities in the Hippocampus of Patients with Schizophrenia: A 3D Multivoxel MR Spectroscopic Imaging Study at 3T.
AJNR Am J Neuroradiol. 2016 Dec;37(12):2273-2279. doi: 10.3174/ajnr.A4886. Epub 2016 Jul 21.

本文引用的文献

2
Absolute MR thermometry using time-domain analysis of multi-gradient-echo magnitude images.
Magn Reson Med. 2010 Jul;64(1):239-48. doi: 10.1002/mrm.22429.
4
Spatiotemporal magnetic field monitoring for MR.
Magn Reson Med. 2008 Jul;60(1):187-97. doi: 10.1002/mrm.21603.
5
Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field.
MAGMA. 2006 Nov;19(5):223-36. doi: 10.1007/s10334-006-0050-2. Epub 2006 Oct 17.
6
Real-time RF pulse adjustment for B0 drift correction.
Magn Reson Med. 2006 Jul;56(1):204-9. doi: 10.1002/mrm.20936.
8
Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.
Magn Reson Med. 2005 Nov;54(5):1261-7. doi: 10.1002/mrm.20695.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验