Department of Mathematics, University of California Irvine, Irvine, California, USA.
PLoS One. 2012;7(11):e48361. doi: 10.1371/journal.pone.0048361. Epub 2012 Nov 15.
HIV can spread through its target cell population either via cell-free transmission, or by cell-to-cell transmission, presumably through virological synapses. Synaptic transmission entails the transfer of tens to hundreds of viruses per synapse, a fraction of which successfully integrate into the target cell genome. It is currently not understood how synaptic transmission affects viral fitness. Using a mathematical model, we investigate how different synaptic transmission strategies, defined by the number of viruses passed per synapse, influence the basic reproductive ratio of the virus, R(0), and virus load. In the most basic scenario, the model suggests that R(0) is maximized if a single virus particle is transferred per synapse. R(0) decreases and the infection eventually cannot be maintained for larger numbers of transferred viruses, because multiple infection of the same cell wastes viruses that could otherwise enter uninfected cells. To explain the relatively large number of HIV copies transferred per synapse, we consider additional biological assumptions under which an intermediate number of viruses transferred per synapse could maximize R(0). These include an increased burst size in multiply infected cells, the saturation of anti-viral factors upon infection of cells, and rate limiting steps during the process of synapse formation.
HIV 可以通过游离病毒传播或细胞间传播两种途径在其靶细胞群中传播,推测是通过病毒突触进行传播。突触传递涉及每个突触传递数十到数百个病毒,其中一部分成功整合到靶细胞基因组中。目前尚不清楚突触传递如何影响病毒适应性。我们使用数学模型研究了不同的突触传递策略(定义为每个突触传递的病毒数量)如何影响病毒的基本繁殖率 R(0)和病毒载量。在最基本的情况下,如果每个突触传递一个病毒颗粒,则模型表明 R(0)最大化。当传递的病毒数量增加时,R(0) 会降低,感染最终无法维持,因为同一细胞的多次感染会浪费本可以进入未感染细胞的病毒。为了解释每个突触传递的 HIV 拷贝数相对较大的情况,我们考虑了其他生物学假设,即在每个突触传递的病毒数量适中的情况下可以最大化 R(0)。这些假设包括多感染细胞中的爆发大小增加、细胞感染时抗病毒因子的饱和以及突触形成过程中的限速步骤。