Department of Biological Sciences and Northeast Structural Genomics Consortium, 702A Fairchild Center, MC2434, Columbia University, New York, New York 10027, USA.
J Am Chem Soc. 2013 Feb 27;135(8):2999-3010. doi: 10.1021/ja306361q. Epub 2013 Feb 14.
SecA is an intensively studied mechanoenzyme that uses ATP hydrolysis to drive processive extrusion of secreted proteins through a protein-conducting channel in the cytoplasmic membrane of eubacteria. The ATPase motor of SecA is strongly homologous to that in DEAD-box RNA helicases. It remains unclear how local chemical events in its ATPase active site control the overall conformation of an ~100 kDa multidomain enzyme and drive protein transport. In this paper, we use biophysical methods to establish that a single electrostatic charge in the ATPase active site controls the global conformation of SecA. The enzyme undergoes an ATP-modulated endothermic conformational transition (ECT) believed to involve similar structural mechanics to the protein transport reaction. We have characterized the effects of an isosteric glutamate-to-glutamine mutation in the catalytic base, a mutation which mimics the immediate electrostatic consequences of ATP hydrolysis in the active site. Calorimetric studies demonstrate that this mutation facilitates the ECT in Escherichia coli SecA and triggers it completely in Bacillus subtilis SecA. Consistent with the substantial increase in entropy observed in the course of the ECT, hydrogen-deuterium exchange mass spectrometry demonstrates that it increases protein backbone dynamics in domain-domain interfaces at remote locations from the ATPase active site. The catalytic glutamate is one of ~250 charged amino acids in SecA, and yet neutralization of its side chain charge is sufficient to trigger a global order-disorder transition in this 100 kDa enzyme. The intricate network of structural interactions mediating this effect couples local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA. This network forms the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes.
SecA 是一种经过深入研究的机械酶,它利用 ATP 水解来驱动分泌蛋白通过细胞质膜中的蛋白质传导通道进行连续挤出。SecA 的 ATP 酶马达与 DEAD-box RNA 解旋酶非常相似。目前尚不清楚其 ATP 酶活性位点中的局部化学事件如何控制约 100kDa 多域酶的整体构象并驱动蛋白质运输。在本文中,我们使用生物物理方法证明 ATP 酶活性位点中的单个静电荷控制 SecA 的整体构象。该酶经历了一种 ATP 调节的吸热构象转变(ECT),据信该转变涉及与蛋白质运输反应类似的结构力学。我们已经描述了催化碱基中单个静电电荷在 ATP 酶活性位点中控制 SecA 整体构象的作用。该酶经历了一种 ATP 调节的吸热构象转变(ECT),据信该转变涉及与蛋白质运输反应类似的结构力学。我们已经描述了催化碱基中单个静电电荷在 ATP 酶活性位点中控制 SecA 整体构象的作用。该酶经历了一种 ATP 调节的吸热构象转变(ECT),据信该转变涉及与蛋白质运输反应类似的结构力学。我们已经描述了催化碱基中单个静电电荷在 ATP 酶活性位点中控制 SecA 整体构象的作用。该酶经历了一种 ATP 调节的吸热构象转变(ECT),据信该转变涉及与蛋白质运输反应类似的结构力学。我们已经描述了催化碱基中单个静电电荷在 ATP 酶活性位点中控制 SecA 整体构象的作用。
该突变模拟了活性位点中 ATP 水解的直接静电后果。量热研究表明,该突变促进了大肠杆菌 SecA 的 ECT,并完全触发了枯草芽孢杆菌 SecA 的 ECT。与 ECT 过程中观察到的熵显著增加一致,氢氘交换质谱证明它增加了远离 ATP 酶活性位点的结构域-结构域界面处的蛋白质骨架动力学。催化谷氨酸是 SecA 中约 250 个带电氨基酸之一,但其侧链电荷的中和足以引发该 100kDa 酶的全局有序-无序转变。介导这种效应的结构相互作用的复杂网络将 ATP 水解过程中的局部静电变化与 SecA 的整体构象和动态变化联系起来。这个网络构成了变构机械化学的基础,它有效地利用 ATP 中储存的化学能来驱动复杂的机械过程。