Suppr超能文献

使用改良的蛋白质错误折叠循环扩增选择性扩增经典和非典型朊病毒。

Selective amplification of classical and atypical prions using modified protein misfolding cyclic amplification.

机构信息

Center for Biomedical Engineering and Technology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.

出版信息

J Biol Chem. 2013 Jan 4;288(1):33-41. doi: 10.1074/jbc.M112.419531. Epub 2012 Nov 20.

Abstract

With the development of protein misfolding cyclic amplification (PMCA), the topic of faithful propagation of prion strain-specific structures has been constantly debated. Here we show that by subjecting brain material of a synthetic strain consisting of a mixture of self-replicating states to PMCAb, selective amplification of PrP(Sc) could be achieved, and that PMCAb mimicked the evolutionary trend observed during serial transmission in animals. On the other hand, using modified PMCAb conditions that employ partially deglycosylated PrP(C) (dgPMCAb), an alternative transmissible state referred to as atypical protease-resistant form of the prion protein (atypical PrPres) was selectively amplified from a mixture. Surprisingly, when hamster-adapted strains (263K and Hyper) were subjected to dgPMCAb, their proteinase K digestion profile underwent a dramatic transformation, suggesting that a mixture of atypical PrPres and PrP(Sc) might be present in brain-derived materials. However, detailed analysis revealed that the proteinase K-resistant profile of PrP(Sc) changed in response to dgPMCAb. Despite these changes, the 263K strain-specific disease phenotype was preserved after passage through dgPMCAb. This study revealed that the change in PrP(Sc) biochemical phenotype does not always represent an irreversible transformation of a strain, but rather demonstrated the existence of a wide range of variation for strain-specific physical features in response to a change in prion replication environment. The current work introduced a new PMCA technique for amplification of atypical PrPres and raised a number of questions about the need for a clever distinction between actual strain mutation and variation of strain-specific features in response to a change in the replication environment.

摘要

随着蛋白质错误折叠循环扩增 (PMCA) 的发展,朊病毒株特异性结构忠实传播的话题一直备受争议。在这里,我们表明,通过将由自我复制状态混合物组成的合成株的脑组织暴露于 PMCAb 中,可以实现 PrP(Sc) 的选择性扩增,并且 PMCAb 模拟了在动物中连续传播过程中观察到的进化趋势。另一方面,使用经过修饰的 PMCAb 条件,即使用部分去糖基化的 PrP(C) (dgPMCAb),可以从混合物中选择性地扩增出另一种可传播的状态,称为朊病毒蛋白的非典型抗性形式 (非典型 PrPres)。令人惊讶的是,当仓鼠适应株 (263K 和 Hyper) 被 dgPMCAb 处理时,它们的蛋白酶 K 消化谱发生了剧烈的变化,这表明在源自大脑的材料中可能存在混合的非典型 PrPres 和 PrP(Sc)。然而,详细分析表明,dgPMCAb 改变了 PrP(Sc)的蛋白酶 K 抗性谱。尽管发生了这些变化,但在经过 dgPMCAb 传递后,263K 株特有的疾病表型得以保留。本研究表明,PrP(Sc)生化表型的变化并不总是代表株的不可逆转化,而是表明在朊病毒复制环境发生变化时,株特异性物理特征存在广泛的变化。目前的工作引入了一种新的 PMCA 技术来扩增非典型 PrPres,并提出了一些关于在复制环境发生变化时,需要巧妙地区分实际株突变和株特异性特征变化的问题。

相似文献

1
Selective amplification of classical and atypical prions using modified protein misfolding cyclic amplification.
J Biol Chem. 2013 Jan 4;288(1):33-41. doi: 10.1074/jbc.M112.419531. Epub 2012 Nov 20.
2
Generation of genuine prion infectivity by serial PMCA.
Vet Microbiol. 2007 Aug 31;123(4):346-57. doi: 10.1016/j.vetmic.2007.04.004. Epub 2007 Apr 7.
4
Changes in prion replication environment cause prion strain mutation.
FASEB J. 2013 Sep;27(9):3702-10. doi: 10.1096/fj.13-230466. Epub 2013 May 31.
5
A new mechanism for transmissible prion diseases.
J Neurosci. 2012 May 23;32(21):7345-55. doi: 10.1523/JNEUROSCI.6351-11.2012.
6
Autocatalytic self-propagation of misfolded prion protein.
Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12207-11. doi: 10.1073/pnas.0404650101. Epub 2004 Aug 5.
8
Highly efficient protein misfolding cyclic amplification.
PLoS Pathog. 2011 Feb 10;7(2):e1001277. doi: 10.1371/journal.ppat.1001277.
10
New Molecular Insight into Mechanism of Evolution of Mammalian Synthetic Prions.
Am J Pathol. 2016 Apr;186(4):1006-14. doi: 10.1016/j.ajpath.2015.11.013. Epub 2016 Feb 9.

引用本文的文献

1
Multiple steps of prion strain adaptation to a new host.
Front Neurosci. 2024 Jan 31;18:1329010. doi: 10.3389/fnins.2024.1329010. eCollection 2024.
3
Prion strains: shining new light on old concepts.
Cell Tissue Res. 2023 Apr;392(1):113-133. doi: 10.1007/s00441-022-03665-2. Epub 2022 Jul 7.
4
Role of sialylation of N-linked glycans in prion pathogenesis.
Cell Tissue Res. 2023 Apr;392(1):201-214. doi: 10.1007/s00441-022-03584-2. Epub 2022 Jan 28.
5
Understanding Intra-Species and Inter-Species Prion Conversion and Zoonotic Potential Using Protein Misfolding Cyclic Amplification.
Front Aging Neurosci. 2021 Aug 3;13:716452. doi: 10.3389/fnagi.2021.716452. eCollection 2021.
8
Posttranslational modifications define course of prion strain adaptation and disease phenotype.
J Clin Invest. 2020 Aug 3;130(8):4382-4395. doi: 10.1172/JCI138677.
9
Cofactor and glycosylation preferences for in vitro prion conversion are predominantly determined by strain conformation.
PLoS Pathog. 2020 Apr 15;16(4):e1008495. doi: 10.1371/journal.ppat.1008495. eCollection 2020 Apr.
10
Underglycosylated prion protein modulates plaque formation in the brain.
J Clin Invest. 2020 Mar 2;130(3):1087-1089. doi: 10.1172/JCI134842.

本文引用的文献

2
Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions.
Proc Natl Acad Sci U S A. 2012 Jul 10;109(28):E1938-46. doi: 10.1073/pnas.1206999109. Epub 2012 Jun 18.
3
Dissecting structure of prion amyloid fibrils by hydrogen-deuterium exchange ultraviolet Raman spectroscopy.
J Phys Chem B. 2012 Jul 12;116(27):7926-30. doi: 10.1021/jp2122455. Epub 2012 Jun 26.
4
A new mechanism for transmissible prion diseases.
J Neurosci. 2012 May 23;32(21):7345-55. doi: 10.1523/JNEUROSCI.6351-11.2012.
5
Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids.
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8546-51. doi: 10.1073/pnas.1204498109. Epub 2012 May 14.
6
Biochemical properties of highly neuroinvasive prion strains.
PLoS Pathog. 2012 Feb;8(2):e1002522. doi: 10.1371/journal.ppat.1002522. Epub 2012 Feb 2.
7
Genesis of mammalian prions: from non-infectious amyloid fibrils to a transmissible prion disease.
PLoS Pathog. 2011 Dec;7(12):e1002419. doi: 10.1371/journal.ppat.1002419. Epub 2011 Dec 1.
8
Lower specific infectivity of protease-resistant prion protein generated in cell-free reactions.
Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):E1244-53. doi: 10.1073/pnas.1111255108. Epub 2011 Nov 7.
9
Mutability of prions.
EMBO Rep. 2011 Dec 1;12(12):1243-50. doi: 10.1038/embor.2011.191.
10
In vitro generation of high-titer prions.
J Virol. 2011 Dec;85(24):13439-42. doi: 10.1128/JVI.06134-11. Epub 2011 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验