文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白质中的半胱氨酸氧化:结构、生物物理和模拟。

Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation.

机构信息

Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.

出版信息

Biochemistry. 2022 Oct 18;61(20):2165-2176. doi: 10.1021/acs.biochem.2c00349. Epub 2022 Sep 26.


DOI:10.1021/acs.biochem.2c00349
PMID:36161872
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9583617/
Abstract

Cysteine side chains can exist in distinct oxidation states depending on the pH and redox potential of the environment, and cysteine oxidation plays important yet complex regulatory roles. Compared with the effects of post-translational modifications such as phosphorylation, the effects of oxidation of cysteine to sulfenic, sulfinic, and sulfonic acid on protein structure and function remain relatively poorly characterized. We present an analysis of the role of cysteine reactivity as a regulatory factor in proteins, emphasizing the interplay between electrostatics and redox potential as key determinants of the resulting oxidation state. A review of current computational approaches suggests underdeveloped areas of research for studying cysteine reactivity through molecular simulations.

摘要

半胱氨酸侧链可以根据环境的 pH 值和氧化还原电位存在于不同的氧化态,而半胱氨酸氧化在调节作用中具有重要而复杂的作用。与磷酸化等翻译后修饰的影响相比,半胱氨酸氧化为亚磺酸、磺酸的作用对蛋白质结构和功能的影响仍相对较差。我们对半胱氨酸反应性作为蛋白质调节因子的作用进行了分析,强调了静电相互作用和氧化还原电位之间的相互作用是决定氧化态的关键因素。对当前计算方法的综述表明,通过分子模拟研究半胱氨酸反应性的研究领域还有待发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/cb7bd0a5f2f2/bi2c00349_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/a56e5fa04df3/bi2c00349_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/6d4ad7a95611/bi2c00349_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/768c58aae14f/bi2c00349_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/d7dc77ecb9dc/bi2c00349_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/cb7bd0a5f2f2/bi2c00349_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/a56e5fa04df3/bi2c00349_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/6d4ad7a95611/bi2c00349_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/768c58aae14f/bi2c00349_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/d7dc77ecb9dc/bi2c00349_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c4/9583617/cb7bd0a5f2f2/bi2c00349_0005.jpg

相似文献

[1]
Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation.

Biochemistry. 2022-10-18

[2]
Expanding the functional diversity of proteins through cysteine oxidation.

Curr Opin Chem Biol. 2008-12

[3]
Formation, reactivity, and detection of protein sulfenic acids.

Chem Res Toxicol. 2010-9-16

[4]
The redox biochemistry of protein sulfenylation and sulfinylation.

J Biol Chem. 2013-7-16

[5]
Novel oxidative modifications in redox-active cysteine residues.

Mol Cell Proteomics. 2010-12-10

[6]
Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.

FEBS J. 2013-10-16

[7]
The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.

Arch Biochem Biophys. 2017-2-15

[8]
Fragmentation of protonated ions of peptides containing cysteine, cysteine sulfinic acid, and cysteine sulfonic acid.

J Am Soc Mass Spectrom. 2004-5

[9]
Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.

Nature. 2003-6-12

[10]
13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase.

Biochemistry. 1997-7-15

引用本文的文献

[1]
Crystal structures of 40- and 71-substitution variants of hydroxynitrile lyase from rubber tree.

Acta Crystallogr D Struct Biol. 2025-9-1

[2]
Integrating Redox Proteomics and Computational Modeling to Decipher Thiol-Based Oxidative Post-Translational Modifications (oxiPTMs) in Plant Stress Physiology.

Int J Mol Sci. 2025-7-18

[3]
Role of Redox-Induced Protein Modifications in Spermatozoa in Health and Disease.

Antioxidants (Basel). 2025-6-12

[4]
Click biology highlights the opportunities from reliable biological reactions.

Nat Chem Biol. 2025-7

[5]
Cysteine-rich zinc finger proteins and the nuclear factor kappa-B pathway.

Front Chem Biol. 2024

[6]
Mitochondria-derived reactive oxygen species induce over-differentiation of neural stem/progenitor cells after non-cytotoxic cisplatin exposure.

Front Cell Dev Biol. 2025-4-29

[7]
More questions than answers: insights into potential cysteine-rich receptor-like kinases redox signalling in Arabidopsis.

Plant J. 2025-4

[8]
Comparing In Vitro Virucidal Efficacy of Commercially Available Mouthwashes Against Native High-Risk Human Papillomavirus Types 16 and 18.

Microorganisms. 2025-3-25

[9]
Chemoproteomic analysis reveals RECQL4 as a mediator of nitroalkene-dependent double-strand break repair inhibition in cancer.

Res Sq. 2025-3-26

[10]
Two redox-responsive LysR-type transcription factors control the oxidative stress response of Agrobacterium tumefaciens.

Nucleic Acids Res. 2025-3-20

本文引用的文献

[1]
Proteome-Wide Profiling of Cellular Targets Modified by Dopamine Metabolites Using a Bio-Orthogonally Functionalized Catecholamine.

ACS Chem Biol. 2021-11-19

[2]
Cytoprotective Mechanisms of DJ-1: Implications in Cardiac Pathophysiology.

Molecules. 2021-6-22

[3]
Additive CHARMM36 Force Field for Nonstandard Amino Acids.

J Chem Theory Comput. 2021-6-8

[4]
A lysine-cysteine redox switch with an NOS bridge regulates enzyme function.

Nature. 2021-5

[5]
ProDy 2.0: increased scale and scope after 10 years of protein dynamics modelling with Python.

Bioinformatics. 2021-10-25

[6]
Structural insights into redox-active cysteine residues of the Src family kinases.

Redox Biol. 2021-5

[7]
Redox Regulation of the Actin Cytoskeleton in Cell Migration and Adhesion: On the Way to a Spatiotemporal View.

Front Cell Dev Biol. 2021-1-28

[8]
Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries.

Nat Biotechnol. 2021-5

[9]
New Factors Enhancing the Reactivity of Cysteines in Molten Globule-Like Structures.

Int J Mol Sci. 2020-9-22

[10]
Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation.

Redox Biol. 2020-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索