Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia.
Ann Bot. 2013 Nov;112(8):1553-66. doi: 10.1093/aob/mcs246. Epub 2012 Nov 20.
Understanding and modelling early events of floral meristem patterning and floral development requires consideration of positional information regarding the organs surrounding the floral meristem, such as the flower-subtending bracts (FSBs) and floral prophylls (bracteoles). In common with models of regulation of floral patterning, the simplest models of phyllotaxy consider only unbranched uniaxial systems. Racemose inflorescences and thyrses offer a useful model system for investigating morphogenetic interactions between organs belonging to different axes.
This review considers (1) racemose inflorescences of early-divergent and lilioid monocots and their possible relationship with other inflorescence types, (2) hypotheses on the morphogenetic significance of phyllomes surrounding developing flowers, (3) patterns of FSB reduction and (4) vascular patterns in the primary inflorescence axis and lateral pedicels.
Racemose (partial) inflorescences represent the plesiomorphic condition in monocots. The presence or absence of a terminal flower or flower-like structure is labile among early-divergent monocots. In some Alismatales, a few-flowered racemose inflorescence can be entirely transformed into a terminal 'flower'. The presence or absence and position of additional phyllomes on the lateral pedicels represent important taxonomic markers and key features in regulation of flower patterning. Racemose inflorescences with a single floral prophyll are closely related to thyrses. Floral patterning is either unidirectional or simultaneous in species that lack a floral prophyll or possess a single adaxial floral prophyll and usually spiral in the outer perianth whorl in species with a transversely oriented floral prophyll. Inhibitory fields of surrounding phyllomes are relevant but insufficient to explain these patterns; other important factors are meristem space economy and/or the inhibitory activity of the primary inflorescence axis. Two patterns of FSB reduction exist in basal monocots: (1) complete FSB suppression (cryptic flower-subtending bract) and (2) formation of a 'hybrid' organ by overlap of the developmental programmes of the FSB and the first abaxial organ formed on the floral pedicel. FSB reduction affects patterns of interaction between the conductive systems of the flower and the primary inflorescence axis.
理解和模拟花分生组织模式形成和花发育的早期事件需要考虑围绕花分生组织的器官的位置信息,如花托苞片(FSB)和花原基(小苞片)。与花模式形成的调控模型一样,最简单的叶序模型仅考虑不分枝的单轴系统。总状花序和复总状花序为研究属于不同轴的器官之间的形态发生相互作用提供了一个有用的模型系统。
本文综述了(1)早期分化的百合类单子叶植物和它们的石蒜类的总状花序及其与其他花序类型的可能关系,(2)关于发育中的花周围叶序的形态发生意义的假设,(3)FSB 减少的模式,以及(4)初级花序轴和侧花梗的维管束模式。
总状花序(部分)在单子叶植物中代表了原始的状态。在早期分化的单子叶植物中,终端花或花状结构的存在或缺失是不稳定的。在一些泽泻目中,少数花的总状花序可以完全转化为终端“花”。侧花梗上额外叶序的存在或缺失和位置代表了重要的分类标记和花模式形成调控的关键特征。具有单个花原基的总状花序与复总状花序密切相关。在没有花原基或只有一个近轴花原基的物种中,花模式形成是单向的或同时的,而在外轮花被中通常是螺旋状的,在具有横向定向花原基的物种中。周围叶序的抑制场是相关的,但不足以解释这些模式;其他重要因素是分生组织空间经济和/或初级花序轴的抑制活性。基部单子叶植物中存在两种 FSB 减少模式:(1)完全抑制 FSB(隐蔽的花托苞片)和(2)通过 FSB 和在花花梗上形成的第一个背轴器官的发育程序重叠形成“杂种”器官。FSB 减少影响花和初级花序轴的传导系统之间相互作用的模式。