Suppr超能文献

用于酿酒酵母的改良短寿命荧光蛋白转录报告基因。

An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae.

机构信息

Department of Physics, University of North Carolina, Chapel Hill, NC 27599-7260, USA.

出版信息

Yeast. 2012 Dec;29(12):519-30. doi: 10.1002/yea.2932. Epub 2012 Nov 21.

Abstract

Ideal reporter genes for temporal transcription programmes have short half-lives that restrict their detection to the window in which their transcripts are present and translated. In an effort to meet this criterion for reporters of transcription in individual living cells, we adapted the ubiquitin fusion strategy for programmable N-end rule degradation to generate an N-degron version of green fluorescent protein (GFP) with a half-life of ~7 min. The GFP variant we used here (designated GFP*) has excellent fluorescence brightness and maturation properties, which make the destabilized reporter well suited for tracking the induction and attenuation kinetics of gene expression in living cells. These attributes are illustrated by its ability to track galactose- and pheromone-induced transcription in S. cerevisiae. We further show that the fluorescence measurements using the short-lived N-degron GFP* reporter gene accurately predict the transient mRNA profile of the prototypical pheromone-induced FUS1 gene.

摘要

理想的用于时间转录程序的报告基因具有较短的半衰期,这限制了它们的检测只能在其转录本存在和翻译的窗口内进行。为了满足单个活细胞中转录报告基因的这一标准,我们采用了泛素融合策略来进行可编程 N 末端规则降解,从而生成半衰期约为 7 分钟的绿色荧光蛋白 (GFP) 的 N 降解结构域版本。我们在这里使用的 GFP 变体(命名为 GFP*)具有出色的荧光亮度和成熟特性,这使得不稳定的报告基因非常适合跟踪活细胞中基因表达的诱导和衰减动力学。这些特性通过其在跟踪酿酒酵母中半乳糖和诱导物诱导的转录方面的能力得到了体现。我们进一步表明,使用短半衰期 N 降解结构域 GFP*报告基因进行的荧光测量可以准确预测原型诱导物诱导的 FUS1 基因的瞬时 mRNA 谱。

相似文献

1
An improved short-lived fluorescent protein transcriptional reporter for Saccharomyces cerevisiae.
Yeast. 2012 Dec;29(12):519-30. doi: 10.1002/yea.2932. Epub 2012 Nov 21.
3
Green fluorescent protein in Saccharomyces cerevisiae: real-time studies of the GAL1 promoter.
Biotechnol Bioeng. 2000 Oct 20;70(2):187-96. doi: 10.1002/1097-0290(20001020)70:2<187::aid-bit8>3.0.co;2-h.
4
Preparation of Saccharomyces cerevisiae expression plasmids.
Methods Mol Biol. 2012;866:41-6. doi: 10.1007/978-1-61779-770-5_4.
5
3'-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation.
EMBO J. 2006 Sep 20;25(18):4253-62. doi: 10.1038/sj.emboj.7601305. Epub 2006 Aug 31.
6
Monitoring the temporal and spatial distribution of RNA in living yeast cells.
Methods Mol Biol. 2008;419:187-96. doi: 10.1007/978-1-59745-033-1_13.
7
Fluorescence based assay of GAL system in yeast Saccharomyces cerevisiae.
FEMS Microbiol Lett. 2005 Mar 1;244(1):105-10. doi: 10.1016/j.femsle.2005.01.041.
8
Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry.
Yeast. 2000 Oct;16(14):1313-23. doi: 10.1002/1097-0061(200010)16:14<1313::AID-YEA626>3.0.CO;2-O.
9
RNA-ID, a Powerful Tool for Identifying and Characterizing Regulatory Sequences.
Methods Enzymol. 2016;572:237-53. doi: 10.1016/bs.mie.2016.02.003. Epub 2016 Mar 11.

引用本文的文献

2
Deciphering the landscape of cis-acting sequences in natural yeast transcript leaders.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf165.
3
Development of destabilized mCherry fluorescent proteins for applications in the model yeast .
Biotechnol Notes. 2022 Dec 9;3:108-112. doi: 10.1016/j.biotno.2022.12.001. eCollection 2022.
4
Next-generation AMA1-based plasmids for enhanced heterologous expression in filamentous fungi.
Microb Biotechnol. 2024 Sep;17(9):e70010. doi: 10.1111/1751-7915.70010.
5
Deciphering the -regulatory landscape of natural yeast Transcript Leaders.
bioRxiv. 2024 Jul 5:2024.07.03.601937. doi: 10.1101/2024.07.03.601937.
6
Proteasome condensate formation is driven by multivalent interactions with shuttle factors and ubiquitin chains.
Proc Natl Acad Sci U S A. 2024 Mar 5;121(10):e2310756121. doi: 10.1073/pnas.2310756121. Epub 2024 Feb 26.
8
Autophagy-mediated surveillance of Rim4-mRNA interaction safeguards programmed meiotic translation.
Cell Rep. 2023 Sep 26;42(9):113051. doi: 10.1016/j.celrep.2023.113051. Epub 2023 Sep 1.
10
Controlling gene expression with deep generative design of regulatory DNA.
Nat Commun. 2022 Aug 30;13(1):5099. doi: 10.1038/s41467-022-32818-8.

本文引用的文献

1
Kinetic study of de novo chromophore maturation of fluorescent proteins.
Anal Biochem. 2011 Jul 15;414(2):173-8. doi: 10.1016/j.ab.2011.03.036. Epub 2011 Apr 1.
2
Coordinate control of gene expression noise and interchromosomal interactions in a MAP kinase pathway.
Nat Cell Biol. 2010 Oct;12(10):954-62. doi: 10.1038/ncb2097. Epub 2010 Sep 19.
3
Preparation of yeast RNA.
Curr Protoc Mol Biol. 2001 May;Chapter 13:Unit13.12. doi: 10.1002/0471142727.mb1312s23.
4
Mathematical analysis and quantification of fluorescent proteins as transcriptional reporters.
Biophys J. 2008 Mar 15;94(6):2017-26. doi: 10.1529/biophysj.107.122200. Epub 2007 Dec 7.
6
Regulated cell-to-cell variation in a cell-fate decision system.
Nature. 2005 Sep 29;437(7059):699-706. doi: 10.1038/nature03998. Epub 2005 Sep 18.
7
Control of stochasticity in eukaryotic gene expression.
Science. 2004 Jun 18;304(5678):1811-4. doi: 10.1126/science.1098641. Epub 2004 May 27.
8
Mechanisms of protein fluorophore formation and engineering.
Curr Opin Chem Biol. 2003 Oct;7(5):557-62. doi: 10.1016/s1367-5931(03)00097-8.
9
Noise in eukaryotic gene expression.
Nature. 2003 Apr 10;422(6932):633-7. doi: 10.1038/nature01546.
10
Stochastic gene expression in a single cell.
Science. 2002 Aug 16;297(5584):1183-6. doi: 10.1126/science.1070919.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验