Suppr超能文献

功能失调的线粒体调节 cAMP-PKA 信号和酿酒酵母丝状和侵袭性生长。

Dysfunctional mitochondria modulate cAMP-PKA signaling and filamentous and invasive growth of Saccharomyces cerevisiae.

机构信息

Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia.

出版信息

Genetics. 2013 Feb;193(2):467-81. doi: 10.1534/genetics.112.147389. Epub 2012 Nov 19.

Abstract

Mitochondrial metabolism is targeted by conserved signaling pathways that mediate external information to the cell. However, less is known about whether mitochondrial dysfunction interferes with signaling and thereby modulates the cellular response to environmental changes. In this study, we analyzed defective filamentous and invasive growth of the yeast Saccharomyces cerevisiae strains that have a dysfunctional mitochondrial genome (rho mutants). We found that the morphogenetic defect of rho mutants was caused by specific downregulation of FLO11, the adhesin essential for invasive and filamentous growth, and did not result from general metabolic changes brought about by interorganellar retrograde signaling. Transcription of FLO11 is known to be regulated by several signaling pathways, including the filamentous-growth-specific MAPK and cAMP-activated protein kinase A (cAMP-PKA) pathways. Our analysis showed that the filamentous-growth-specific MAPK pathway retained functionality in respiratory-deficient yeast cells. In contrast, the cAMP-PKA pathway was downregulated, explaining also various phenotypic traits observed in rho mutants. Thus, our results indicate that dysfunctional mitochondria modulate the output of the conserved cAMP-PKA signaling pathway.

摘要

线粒体代谢受到保守信号通路的靶向调控,这些信号通路将外部信息传递到细胞中。然而,关于线粒体功能障碍是否会干扰信号转导,从而调节细胞对环境变化的反应,人们知之甚少。在这项研究中,我们分析了酵母酿酒酵母中具有功能失调线粒体基因组(rho 突变体)的丝状和侵入性生长缺陷菌株。我们发现,rho 突变体的形态发生缺陷是由 FLO11 的特异性下调引起的,FLO11 是侵入和丝状生长所必需的黏附素,而不是由细胞器间逆行信号转导引起的一般代谢变化引起的。FLO11 的转录已知受多种信号通路的调控,包括丝状生长特异性 MAPK 和 cAMP 激活的蛋白激酶 A(cAMP-PKA)通路。我们的分析表明,呼吸缺陷型酵母细胞中的丝状生长特异性 MAPK 通路仍具有功能。相比之下,cAMP-PKA 通路被下调,这也解释了在 rho 突变体中观察到的各种表型特征。因此,我们的结果表明,功能失调的线粒体调节保守的 cAMP-PKA 信号通路的输出。

相似文献

1
Dysfunctional mitochondria modulate cAMP-PKA signaling and filamentous and invasive growth of Saccharomyces cerevisiae.
Genetics. 2013 Feb;193(2):467-81. doi: 10.1534/genetics.112.147389. Epub 2012 Nov 19.
3
Crosstalk between cAMP-PKA and MAP kinase pathways is a key regulatory design necessary to regulate FLO11 expression.
Biophys Chem. 2007 Jan;125(1):59-71. doi: 10.1016/j.bpc.2006.06.012. Epub 2006 Jun 27.
5
Divergent Roles for cAMP-PKA Signaling in the Regulation of Filamentous Growth in and .
G3 (Bethesda). 2018 Nov 6;8(11):3529-3538. doi: 10.1534/g3.118.200413.
6
A mitochondrial CO2-adenylyl cyclase-cAMP signalosome controls yeast normoxic cytochrome c oxidase activity.
FASEB J. 2014 Oct;28(10):4369-80. doi: 10.1096/fj.14-252890. Epub 2014 Jul 1.
8
Cyclic AMP-independent regulation of protein kinase A substrate phosphorylation by Kelch repeat proteins.
Eukaryot Cell. 2005 Nov;4(11):1794-800. doi: 10.1128/EC.4.11.1794-1800.2005.
10
Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11.
PLoS One. 2008 Feb 27;3(2):e1663. doi: 10.1371/journal.pone.0001663.

引用本文的文献

2
PKA regulatory subunit Bcy1 couples growth, lipid metabolism, and fermentation during anaerobic xylose growth in Saccharomyces cerevisiae.
PLoS Genet. 2023 Jul 6;19(7):e1010593. doi: 10.1371/journal.pgen.1010593. eCollection 2023 Jul.
3
Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity.
PLoS Genet. 2022 Jan 4;18(1):e1009988. doi: 10.1371/journal.pgen.1009988. eCollection 2022 Jan.
4
5
A Stress-Responsive Signaling Network Regulating Pseudohyphal Growth and Ribonucleoprotein Granule Abundance in .
Genetics. 2019 Oct;213(2):705-720. doi: 10.1534/genetics.119.302538. Epub 2019 Aug 27.
6
Aggregate Filamentous Growth Responses in Yeast.
mSphere. 2019 Mar 6;4(2):e00702-18. doi: 10.1128/mSphere.00702-18.
8
Role of Mitochondrial Retrograde Pathway in Regulating Ethanol-Inducible Filamentous Growth in Yeast.
Front Physiol. 2017 Mar 29;8:148. doi: 10.3389/fphys.2017.00148. eCollection 2017.
9
The Functional Role of eL19 and eB12 Intersubunit Bridge in the Eukaryotic Ribosome.
J Mol Biol. 2016 May 22;428(10 Pt B):2203-16. doi: 10.1016/j.jmb.2016.03.023. Epub 2016 Mar 30.
10
Mitochondrial Activity and Cyr1 Are Key Regulators of Ras1 Activation of C. albicans Virulence Pathways.
PLoS Pathog. 2015 Aug 28;11(8):e1005133. doi: 10.1371/journal.ppat.1005133. eCollection 2015 Aug.

本文引用的文献

1
ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase.
Cell Metab. 2011 Nov 2;14(5):707-14. doi: 10.1016/j.cmet.2011.09.009. Epub 2011 Oct 20.
2
Mitochondrial genomic dysfunction causes dephosphorylation of Sch9 in the yeast Saccharomyces cerevisiae.
Eukaryot Cell. 2011 Oct;10(10):1367-9. doi: 10.1128/EC.05157-11. Epub 2011 Aug 12.
3
Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae.
FEMS Microbiol Rev. 2012 Jan;36(1):25-58. doi: 10.1111/j.1574-6976.2011.00275.x. Epub 2011 May 20.
4
Mitochondria regulate autophagy by conserved signalling pathways.
EMBO J. 2011 Jun 1;30(11):2101-14. doi: 10.1038/emboj.2011.104. Epub 2011 Apr 5.
5
Regulation of mitochondrial protein import by cytosolic kinases.
Cell. 2011 Jan 21;144(2):227-39. doi: 10.1016/j.cell.2010.12.015. Epub 2011 Jan 6.
6
Comparing the yeast retrograde response and NF-κB stress responses: implications for aging.
Aging Cell. 2010 Dec;9(6):933-41. doi: 10.1111/j.1474-9726.2010.00622.x. Epub 2010 Oct 21.
7
Multiple signals converge on a differentiation MAPK pathway.
PLoS Genet. 2010 Mar 19;6(3):e1000883. doi: 10.1371/journal.pgen.1000883.
10
Control of mitochondria dynamics and oxidative metabolism by cAMP, AKAPs and the proteasome.
Trends Cell Biol. 2008 Dec;18(12):604-13. doi: 10.1016/j.tcb.2008.09.006. Epub 2008 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验