Department of Computer Science, University College London, London WC1E 6BT, UK.
Artif Intell Med. 2012 Nov;56(3):173-90. doi: 10.1016/j.artmed.2012.09.004. Epub 2012 Nov 22.
Evidence-based decision making is becoming increasingly important in healthcare. Much valuable evidence is in the form of the results from clinical trials that compare the relative merits of treatments. In this paper, we present a new framework for representing and synthesizing knowledge from clinical trials involving multiple outcome indicators.
The framework generates and evaluates arguments for claiming that one treatment is superior, or equivalent, to another based on the available evidence. Evidence comes from randomized clinical trials, systematic reviews, meta-analyses, network analyses, etc. Preference criteria over arguments are used that are based on the outcome indicators, and the magnitude of those outcome indicators, in the evidence. Meta-arguments attacks arguments that are based on weaker evidence.
We evaluated the framework with respect to the aggregation of evidence undertaken in three published clinical guidelines that involve 56 items of evidence and 16 treatments. For each of the three guidelines, the treatment we identified as being superior using our method is a recommended treatment in the corresponding guideline.
The framework offers a formal approach to aggregating clinical evidence, taking into account subjective criteria such as preferences over outcome indicators. In the evaluation, the aggregations obtained showed a good correspondence with published clinical guidelines. Furthermore, preliminary computational studies indicate that the approach is viable for the size of evidence tables normally encountered in practice.
循证决策在医疗保健领域变得越来越重要。大量有价值的证据是以临床试验结果的形式呈现的,这些结果比较了治疗方法的相对优点。在本文中,我们提出了一种新的框架,用于表示和综合涉及多个结局指标的临床试验知识。
该框架根据现有证据生成和评估声称一种治疗方法优于或等同于另一种治疗方法的论点。证据来自随机临床试验、系统评价、荟萃分析、网络分析等。基于证据中的结局指标及其大小,使用偏好标准对论点进行评估。元论点攻击基于较弱证据的论点。
我们使用涉及 56 项证据和 16 种治疗方法的三个已发表临床指南中的证据综合评估了该框架。对于三个指南中的每一个,我们使用我们的方法确定的作为优越的治疗方法是相应指南中推荐的治疗方法。
该框架提供了一种正式的方法来综合临床证据,同时考虑了偏好等主观标准对结局指标的影响。在评估中,获得的综合结果与已发表的临床指南具有良好的一致性。此外,初步的计算研究表明,该方法适用于实践中通常遇到的证据表的大小。