Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Brief Funct Genomics. 2013 Mar;12(2):75-80. doi: 10.1093/bfgp/els054. Epub 2012 Nov 22.
In this review, we discuss a strategy to bring genomics and proteomics into single cells by super-resolution microscopy. The basis for this new approach are the following: given the 10 nm resolution of a super-resolution microscope and a typical cell with a size of (10 µm)(3), individual cells contain effectively 10(9) super-resolution pixels or bits of information. Most eukaryotic cells have 10(4) genes and cellular abundances of 10-100 copies per transcript. Thus, under a super-resolution microscope, an individual cell has 1000 times more pixel volume or information capacities than is needed to encode all transcripts within that cell. Individual species of mRNA can be uniquely identified by labeling them each with a distinct combination of fluorophores by fluorescence in situ hybridization. With at least 15 fluorophores available in super-resolution, hundreds of genes in can be barcoded with a three-color barcode (3C15 = 455). These calculations suggest that by combining super-resolution microscopy and barcode labeling, single cells can be turned into informatics platforms denser than microarrays and that molecular species in individual cells can be profiled in a massively parallel fashion.
在这篇综述中,我们讨论了一种通过超分辨率显微镜将基因组学和蛋白质组学引入单个细胞的策略。这种新方法的基础如下:考虑到超分辨率显微镜的 10nm 分辨率和典型细胞的大小为(10 µm)^(3),单个细胞实际上包含 10^(9)个超分辨率像素或信息量。大多数真核细胞有 10^(4)个基因,每个转录本的细胞丰度为 10-100 个拷贝。因此,在超分辨率显微镜下,单个细胞的像素体积或信息量比编码该细胞内所有转录本所需的信息量多出 1000 倍。通过荧光原位杂交,每个 mRNA 物种都可以用独特的荧光团组合进行标记,从而可以唯一识别。在超分辨率中至少有 15 种荧光团可用,数百个基因可以用三颜色条码(3C15 = 455)进行编码。这些计算表明,通过将超分辨率显微镜和条码标记相结合,可以将单个细胞转化为比微阵列更密集的信息学平台,并且可以以大规模并行的方式对单个细胞中的分子物种进行分析。