Suppr超能文献

磷酸酶在骨骼矿化起始中的作用。

The role of phosphatases in the initiation of skeletal mineralization.

机构信息

Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA,

出版信息

Calcif Tissue Int. 2013 Oct;93(4):299-306. doi: 10.1007/s00223-012-9672-8. Epub 2012 Nov 27.

Abstract

Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene cause hypophosphatasia, a heritable form of rickets and osteomalacia, caused by an arrest in the propagation of hydroxyapatite (HA) crystals onto the collagenous extracellular matrix due to accumulation of extracellular inorganic pyrophosphate (PPi), a physiological TNAP substrate and a potent calcification inhibitor. However, TNAP knockout (Alpl(-/-)) mice are born with a mineralized skeleton and have HA crystals in their chondrocyte- and osteoblast-derived matrix vesicles (MVs). We have shown that PHOSPHO1, a soluble phosphatase with specificity for two molecules present in MVs, phosphoethanolamine and phosphocholine, is responsible for initiating HA crystal formation inside MVs and that PHOSPHO1 and TNAP have nonredundant functional roles during endochondral ossification. Double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality, despite normal systemic phosphate and calcium levels. This strongly suggests that the Pi needed for initiation of MV-mediated mineralization is produced locally in the perivesicular space. As both TNAP and nucleoside pyrophosphohydrolase-1 (NPP1) behave as potent ATPases and pyrophosphatases in the MV compartment, our current model of the mechanisms of skeletal mineralization implicate intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP and NPP1 in the extravesicular progression of mineralization.

摘要

软骨内成骨是一个受矿化促进剂和抑制剂精细调控的过程。磷酸酶被牵涉其中,但它们的身份和功能仍不清楚。组织非特异性碱性磷酸酶(TNAP)基因的突变导致低磷酸酶血症,这是一种遗传性佝偻病和骨软化症,由于细胞外无机焦磷酸盐(PPi)的积累,导致羟基磷灰石(HA)晶体在胶原细胞外基质上的传播受阻,而 PPi 是 TNAP 的一种生理底物和一种有效的钙化抑制剂。然而,TNAP 敲除(Alpl(-/-))小鼠出生时就有矿化的骨骼,并且在其软骨细胞和成骨细胞衍生的基质小泡(MVs)中存在 HA 晶体。我们已经表明,一种对 MV 中两种分子(磷酸乙醇胺和磷酸胆碱)具有特异性的可溶性磷酸酶 PHOSPHO1,负责启动 MV 内 HA 晶体的形成,并且 PHOSPHO1 和 TNAP 在软骨内成骨过程中具有非冗余的功能作用。PHOSPHO1 和 TNAP 功能的双重缺失导致骨骼矿化完全缺失和围产期致死,尽管系统磷酸盐和钙水平正常。这强烈表明,用于启动 MV 介导的矿化所需的 Pi 是在周围空间局部产生的。由于 TNAP 和核苷二磷酸水解酶-1(NPP1)在 MV 隔室中均表现为有效的 ATP 酶和焦磷酸酶,我们目前的骨骼矿化机制模型涉及 MV 内 PHOSPHO1 功能和 Pi 流入 MV 以启动矿化,以及 TNAP 和 NPP1 在 MV 外矿化进展中的功能。

相似文献

1
The role of phosphatases in the initiation of skeletal mineralization.
Calcif Tissue Int. 2013 Oct;93(4):299-306. doi: 10.1007/s00223-012-9672-8. Epub 2012 Nov 27.
3
Inhibition of PHOSPHO1 activity results in impaired skeletal mineralization during limb development of the chick.
Bone. 2010 Apr;46(4):1146-55. doi: 10.1016/j.bone.2009.12.018. Epub 2010 Jan 4.
4
Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization.
Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9445-9. doi: 10.1073/pnas.142063399. Epub 2002 Jun 24.
8
Ablation of osteopontin improves the skeletal phenotype of phospho1(-/-) mice.
J Bone Miner Res. 2014 Nov;29(11):2369-81. doi: 10.1002/jbmr.2281.
9
Functional involvement of PHOSPHO1 in matrix vesicle-mediated skeletal mineralization.
J Bone Miner Res. 2007 Apr;22(4):617-27. doi: 10.1359/jbmr.070108.
10
Effects of pH on the production of phosphate and pyrophosphate by matrix vesicles' biomimetics.
Calcif Tissue Int. 2013 Sep;93(3):222-32. doi: 10.1007/s00223-013-9745-3. Epub 2013 May 31.

引用本文的文献

3
Molecular Determinants of Bone Plasticity Regeneration After Trauma: Forensic Consequences.
Int J Mol Sci. 2025 Jul 25;26(15):7184. doi: 10.3390/ijms26157184.
4
Osteoblasts sense extracellular levels of phosphate to control the local expression of phosphatases for matrix mineralisation.
Bone Rep. 2025 Jul 30;26:101863. doi: 10.1016/j.bonr.2025.101863. eCollection 2025 Sep.
5
A Fragile Phosphate/Pyrophosphate Balance: From Essential Mineralization to Rare Calcifying Diseases.
Curr Osteoporos Rep. 2025 Aug 6;23(1):34. doi: 10.1007/s11914-025-00928-z.
8
Establishment of human periodontal ligament cell lines with mutations to mimic dental aspects of hypophosphatasia.
Front Cell Dev Biol. 2025 Jun 3;13:1572571. doi: 10.3389/fcell.2025.1572571. eCollection 2025.
9
Taking a closer look at matrix vesicle biogenesis.
J Bone Miner Res. 2025 Jul 28;40(8):931-945. doi: 10.1093/jbmr/zjaf076.
10
Reduced orthodontic tooth movement in knockout mice.
JBMR Plus. 2025 Apr 17;9(6):ziaf064. doi: 10.1093/jbmrpl/ziaf064. eCollection 2025 Jun.

本文引用的文献

1
Tooth root dentin mineralization defects in a mouse model of hypophosphatasia.
J Bone Miner Res. 2013 Feb;28(2):271-82. doi: 10.1002/jbmr.1767.
2
Pharmacological inhibition of PHOSPHO1 suppresses vascular smooth muscle cell calcification.
J Bone Miner Res. 2013 Jan;28(1):81-91. doi: 10.1002/jbmr.1733.
3
Central role of pyrophosphate in acellular cementum formation.
PLoS One. 2012;7(6):e38393. doi: 10.1371/journal.pone.0038393. Epub 2012 Jun 4.
4
Enzyme replacement prevents enamel defects in hypophosphatasia mice.
J Bone Miner Res. 2012 Aug;27(8):1722-34. doi: 10.1002/jbmr.1619.
5
A model for the ultrastructure of bone based on electron microscopy of ion-milled sections.
PLoS One. 2012;7(1):e29258. doi: 10.1371/journal.pone.0029258. Epub 2012 Jan 17.
6
Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization.
Circ Res. 2011 Jun 24;109(1):e1-12. doi: 10.1161/CIRCRESAHA.110.238808. Epub 2011 May 12.
7
Deposition of apatite in mineralizing vertebrate extracellular matrices: A model of possible nucleation sites on type I collagen.
Connect Tissue Res. 2011 Jun;52(3):242-54. doi: 10.3109/03008207.2010.551567. Epub 2011 Mar 15.
8
PHOSPHO1 is essential for mechanically competent mineralization and the avoidance of spontaneous fractures.
Bone. 2011 May 1;48(5):1066-74. doi: 10.1016/j.bone.2011.01.010. Epub 2011 Jan 25.
9
Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia.
J Dent Res. 2011 Apr;90(4):470-6. doi: 10.1177/0022034510393517. Epub 2011 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验