Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):20643-8. doi: 10.1073/pnas.1215274109. Epub 2012 Nov 26.
The bacterial flagellum is a motility organelle that consists of a rotary motor and a helical propeller. The flagella usually work individually or by forming a loose bundle to produce thrust. However, the flagellar apparatus of marine bacterium MO-1 is a tight bundle of seven flagellar filaments enveloped in a sheath, and it has been a mystery as to how the flagella rotate smoothly in coordination. Here we have used electron cryotomography to visualize the 3D architecture of the sheathed flagella. The seven filaments are enveloped with 24 fibrils in the sheath, and their basal bodies are arranged in an intertwined hexagonal array similar to the thick and thin filaments of vertebrate skeletal muscles. This complex and exquisite architecture strongly suggests that the fibrils counter-rotate between flagella in direct contact to minimize the friction of high-speed rotation of individual flagella in the tight bundle within the sheath to enable MO-1 cells to swim at about 300 µm/s.
细菌鞭毛是一种运动器官,由一个旋转马达和一个螺旋桨组成。鞭毛通常单独工作或形成松散的束状来产生推力。然而,海洋细菌 MO-1 的鞭毛装置是一个紧密的七根鞭毛丝束,被鞘包裹,鞭毛如何协调地平滑旋转一直是个谜。在这里,我们使用电子晶体断层扫描技术来可视化鞘内鞭毛的三维结构。七根纤维丝被鞘中的 24 根原纤维包裹,它们的基体排列成类似于脊椎动物骨骼肌的粗丝和细丝的交织六边形阵列。这种复杂而精致的结构强烈表明,原纤维在直接接触的鞭毛之间反向旋转,以最小化鞘内紧密束中的单个鞭毛高速旋转的摩擦力,从而使 MO-1 细胞能够以约 300 µm/s 的速度游动。