Suppr超能文献

在不同盐度下,利用恒化器培养耐盐酵母汉逊德巴利酵母时的渗透调节。

Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities.

作者信息

Larsson C, Morales C, Gustafsson L, Adler L

机构信息

Department of Marine Microbiology, University of Göteborg, Sweden.

出版信息

J Bacteriol. 1990 Apr;172(4):1769-74. doi: 10.1128/jb.172.4.1769-1774.1990.

Abstract

The intracellular solute composition of the salt-tolerant yeast Debaryomyces hansenii was studied in glucose-limited chemostat cultures at different concentrations of NaCl (4 mM, 0.68 M, and 1.35 M). A strong positive correlation between the total intracellular polyol concentration (glycerol and arabinitol) and medium salinity was demonstrated. The intracellular polyol concentration was sufficient to balance about 75% of the osmotic pressure of the medium in cultures with 0.68 and 1.35 M NaCl. The intracellular concentration of K+ and Na+, which at low external salinity gave a considerable contribution to the intracellular water potential, was only slightly enhanced with raised medium salinity. However, the ratio of intracellular K+ to Na+ decreased; but this decrease was less drastic in the cells than in the surrounding medium, i.e., the cells were able to select for K+ in favor of Na+. The turgor pressure, which was estimated on the basis of intracellular solute concentrations, was 2,200 kPa in cultures with 4 mM NaCl and decreased when the external salinity was raised, resulting in a value of about 500 kPa in cultures with 1.35 M NaCl. The maintenance of a positive turgor pressure at high salinity was mainly due to an increased production and accumulation of glycerol.

摘要

在不同浓度氯化钠(4 mM、0.68 M和1.35 M)的葡萄糖限制恒化器培养条件下,研究了耐盐酵母汉逊德巴利酵母的细胞内溶质组成。结果表明,细胞内多元醇总浓度(甘油和阿拉伯糖醇)与培养基盐度之间存在很强的正相关关系。在含有0.68 M和1.35 M氯化钠的培养物中,细胞内多元醇浓度足以平衡约75%的培养基渗透压。在低盐度环境下,K+和Na+的细胞内浓度对细胞内水势有相当大的贡献,随着培养基盐度的升高,其浓度仅略有增加。然而,细胞内K+与Na+的比例下降;但这种下降在细胞中比在周围培养基中要缓和,即细胞能够选择K+而不是Na+。根据细胞内溶质浓度估算的膨压,在含有4 mM氯化钠的培养物中为2200 kPa,当外部盐度升高时膨压降低,在含有1.35 M氯化钠的培养物中约为500 kPa。在高盐度下维持正膨压主要是由于甘油产量增加和积累。

相似文献

1
Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities.
J Bacteriol. 1990 Apr;172(4):1769-74. doi: 10.1128/jb.172.4.1769-1774.1990.
2
Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress.
J Bacteriol. 1993 Apr;175(8):2205-13. doi: 10.1128/jb.175.8.2205-2213.1993.
3
Osmotic adaptation in halotolerant yeast, Debaryomyces nepalensis NCYC 3413: role of osmolytes and cation transport.
Extremophiles. 2009 Sep;13(5):793-805. doi: 10.1007/s00792-009-0267-x. Epub 2009 Jul 11.
4
Sodium and potassium transport in the halophilic yeast Debaryomyces hansenii.
Yeast. 2004 Apr 15;21(5):403-12. doi: 10.1002/yea.1108.
6
Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii.
J Bacteriol. 1985 Apr;162(1):300-6. doi: 10.1128/jb.162.1.300-306.1985.

引用本文的文献

1
Osmolyte Signatures for the Protection of Cells under Halophilic Conditions and Osmotic Shock.
J Fungi (Basel). 2021 May 26;7(6):414. doi: 10.3390/jof7060414.
2
Comparative transcriptome analysis of salt tolerance mechanism of W2 under NaCl stress.
3 Biotech. 2019 Jul;9(7):286. doi: 10.1007/s13205-019-1817-2. Epub 2019 Jun 25.
4
Osmotic adaptation in halotolerant yeast, Debaryomyces nepalensis NCYC 3413: role of osmolytes and cation transport.
Extremophiles. 2009 Sep;13(5):793-805. doi: 10.1007/s00792-009-0267-x. Epub 2009 Jul 11.
5
Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae.
Appl Environ Microbiol. 2007 Aug;73(15):4839-48. doi: 10.1128/AEM.00425-07. Epub 2007 Jun 1.
8
Comparative analysis of trehalose production by Debaryomyces hansenii and Saccharomyces cerevisiae under saline stress.
Extremophiles. 2005 Feb;9(1):7-16. doi: 10.1007/s00792-004-0415-2. Epub 2004 Aug 25.
9
Regulated expression of green fluorescent protein in Debaryomyces hansenii.
J Ind Microbiol Biotechnol. 2004 Aug;31(7):301-10. doi: 10.1007/s10295-004-0150-9. Epub 2004 Jul 17.
10
Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress.
J Bacteriol. 1993 Apr;175(8):2205-13. doi: 10.1128/jb.175.8.2205-2213.1993.

本文引用的文献

1
OSMOPHILIC YEASTS.
Adv Food Res. 1963;12:53-94.
3
A test and calibration process for microcalorimeters used as thermal power meters.
J Biochem Biophys Methods. 1982 Sep;6(4):297-306. doi: 10.1016/0165-022x(82)90011-2.
4
On the growth and form of Escherichia coli.
J Gen Microbiol. 1982 Nov;128(11):2527-39. doi: 10.1099/00221287-128-11-2527.
5
An analysis of irreversible plant cell elongation.
J Theor Biol. 1965 Mar;8(2):264-75. doi: 10.1016/0022-5193(65)90077-9.
7
Porosity of the yeast cell wall and membrane.
J Bacteriol. 1974 May;118(2):534-40. doi: 10.1128/jb.118.2.534-540.1974.
8
Water relations of sugar-tolerant yeasts: the role of intracellular polyols.
J Gen Microbiol. 1972 Oct;72(3):589-91. doi: 10.1099/00221287-72-3-589.
9
Ultrastructure of Debaryomyces hansenii.
Arch Mikrobiol. 1970;70(1):14-25. doi: 10.1007/BF00691057.
10
Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii.
J Bacteriol. 1985 Apr;162(1):300-6. doi: 10.1128/jb.162.1.300-306.1985.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验