Bellomo G, Mirabelli F, Vairetti M, Iosi F, Malorni W
Dipartimento di Medicina Interna e Terapia Medica, University of Pavia, Italy.
J Cell Physiol. 1990 Apr;143(1):118-28. doi: 10.1002/jcp.1041430116.
Cytoskeletal abnormalities occurring during oxidative stress generated by the metabolism of the redox cycling compound 2-methyl-1,4-naphtoquinone (menadione) have been investigated in different mammalian cells in culture. Extraction of the whole cytoskeleton as well as the intermediate filament- and the microtubule-enriched fractions from menadione-treated cells revealed a marked depletion of protein sulfhydryl groups. The analysis of the whole cytoskeletal fraction by PAGE showed a menadione-dependent and thiol-sensitive oxidation of actin, leading to the formation of high-molecular-weight aggregates. In addition, the extraction of this fraction with high concentrations of KCl entailed only a partial solubilization of actin. The comparative cytochemical analysis performed on treated cells showed a menadione-dependent clustering of actin microfilaments. The metabolism of menadione induced microtubule depolymerization and inhibition of GTP-induced microtubule assembly from soluble cytosolic components. The latter phenomenon was prevented by previously treating the cytosolic fraction with thiol reductants such as dithiothreitol. Menadione increased the protein content of the intermediate-size filament fraction, partially purified by one or more cycles of disassembly/assembly, and particularly enriched in polypeptides reacting with antikeratin antibodies. Furthermore, a reversible and oxidation-dependent change of the electrophoretic mobility of some polypeptides in this fraction was detected. The immunocytochemical investigation of intermediate-size filament distribution in menadione-treated cells, however, revealed only minor modifications mainly consisting of perinuclear condensation of cytokeratin structures. These findings suggest that cytoskeletal structures (actin microfilaments, microtubules, and intermediate-size filaments) are actually significant targets in quinone-induced oxidative stress.
在体外培养的不同哺乳动物细胞中,对由氧化还原循环化合物2-甲基-1,4-萘醌(甲萘醌)代谢产生的氧化应激过程中发生的细胞骨架异常进行了研究。从甲萘醌处理的细胞中提取整个细胞骨架以及富含中间丝和微管的部分,结果显示蛋白质巯基显著减少。通过聚丙烯酰胺凝胶电泳(PAGE)对整个细胞骨架部分进行分析,结果表明肌动蛋白发生了甲萘醌依赖性且对巯基敏感的氧化,导致形成高分子量聚集体。此外,用高浓度氯化钾提取该部分时,肌动蛋白仅部分溶解。对处理过的细胞进行的比较细胞化学分析显示,肌动蛋白微丝出现了甲萘醌依赖性聚集。甲萘醌的代谢诱导微管解聚,并抑制了由可溶性细胞溶质成分进行的GTP诱导的微管组装。预先用二硫苏糖醇等巯基还原剂处理细胞溶质部分可防止后一种现象。甲萘醌增加了通过一个或多个拆卸/组装循环部分纯化的中等大小丝部分的蛋白质含量,该部分特别富含与抗角蛋白抗体反应的多肽。此外,还检测到该部分中一些多肽的电泳迁移率发生了可逆的氧化依赖性变化。然而,对甲萘醌处理的细胞中中等大小丝分布的免疫细胞化学研究仅发现了微小变化,主要包括细胞角蛋白结构在核周凝聚。这些发现表明,细胞骨架结构(肌动蛋白微丝、微管和中等大小丝)实际上是醌诱导的氧化应激中的重要靶点。