Suppr超能文献

高维广义线性模型的分层收缩先验和模型拟合

Hierarchical shrinkage priors and model fitting for high-dimensional generalized linear models.

作者信息

Yi Nengjun, Ma Shuangge

机构信息

University of Alabama, Birmingham, AL, USA.

出版信息

Stat Appl Genet Mol Biol. 2012 Nov 26;11(6):/j/sagmb.2012.11.issue-6/1544-6115.1803/1544-6115.1803.xml. doi: 10.1515/1544-6115.1803.

Abstract

Abstract Genetic and other scientific studies routinely generate very many predictor variables, which can be naturally grouped, with predictors in the same groups being highly correlated. It is desirable to incorporate the hierarchical structure of the predictor variables into generalized linear models for simultaneous variable selection and coefficient estimation. We propose two prior distributions: hierarchical Cauchy and double-exponential distributions, on coefficients in generalized linear models. The hierarchical priors include both variable-specific and group-specific tuning parameters, thereby not only adopting different shrinkage for different coefficients and different groups but also providing a way to pool the information within groups. We fit generalized linear models with the proposed hierarchical priors by incorporating flexible expectation-maximization (EM) algorithms into the standard iteratively weighted least squares as implemented in the general statistical package R. The methods are illustrated with data from an experiment to identify genetic polymorphisms for survival of mice following infection with Listeria monocytogenes. The performance of the proposed procedures is further assessed via simulation studies. The methods are implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).

摘要

摘要 遗传学和其他科学研究经常会产生大量的预测变量,这些变量可以自然地分组,同一组中的预测变量高度相关。将预测变量的层次结构纳入广义线性模型以进行同时变量选择和系数估计是很有必要的。我们针对广义线性模型中的系数提出了两种先验分布:层次柯西分布和双指数分布。层次先验包括特定变量和特定组的调整参数,从而不仅对不同系数和不同组采用不同的收缩,还提供了一种在组内汇总信息的方法。我们通过将灵活的期望最大化(EM)算法纳入通用统计软件包R中实现的标准迭代加权最小二乘法,来拟合具有所提出的层次先验的广义线性模型。通过一项旨在识别感染单核细胞增生李斯特菌后小鼠存活的基因多态性的实验数据对这些方法进行了说明。通过模拟研究进一步评估了所提出程序的性能。这些方法在一个免费的R包BhGLM(http://www.ssg.uab.edu/bhglm/)中实现。

相似文献

1
Hierarchical shrinkage priors and model fitting for high-dimensional generalized linear models.高维广义线性模型的分层收缩先验和模型拟合
Stat Appl Genet Mol Biol. 2012 Nov 26;11(6):/j/sagmb.2012.11.issue-6/1544-6115.1803/1544-6115.1803.xml. doi: 10.1515/1544-6115.1803.

引用本文的文献

1
Uncertainty-aware traction force microscopy.不确定性感知牵引力显微镜术。
PLoS Comput Biol. 2025 Jun 12;21(6):e1013079. doi: 10.1371/journal.pcbi.1013079. eCollection 2025 Jun.

本文引用的文献

2
Bayesian sparsity-path-analysis of genetic association signal using generalized t priors.使用广义t先验对遗传关联信号进行贝叶斯稀疏路径分析。
Stat Appl Genet Mol Biol. 2012 Jan 6;11(2):/j/sagmb.2012.11.issue-2/1544-6115.1712/1544-6115.1712.xml. doi: 10.2202/1544-6115.1712.
6
Bayesian LASSO for quantitative trait loci mapping.用于数量性状基因座定位的贝叶斯套索法
Genetics. 2008 Jun;179(2):1045-55. doi: 10.1534/genetics.107.085589. Epub 2008 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验