Suppr超能文献

用于罕见和常见变异的多个组的分层广义线性模型:联合估计组和个体变异效应。

Hierarchical generalized linear models for multiple groups of rare and common variants: jointly estimating group and individual-variant effects.

机构信息

Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.

出版信息

PLoS Genet. 2011 Dec;7(12):e1002382. doi: 10.1371/journal.pgen.1002382. Epub 2011 Dec 1.

Abstract

Complex diseases and traits are likely influenced by many common and rare genetic variants and environmental factors. Detecting disease susceptibility variants is a challenging task, especially when their frequencies are low and/or their effects are small or moderate. We propose here a comprehensive hierarchical generalized linear model framework for simultaneously analyzing multiple groups of rare and common variants and relevant covariates. The proposed hierarchical generalized linear models introduce a group effect and a genetic score (i.e., a linear combination of main-effect predictors for genetic variants) for each group of variants, and jointly they estimate the group effects and the weights of the genetic scores. This framework includes various previous methods as special cases, and it can effectively deal with both risk and protective variants in a group and can simultaneously estimate the cumulative contribution of multiple variants and their relative importance. Our computational strategy is based on extending the standard procedure for fitting generalized linear models in the statistical software R to the proposed hierarchical models, leading to the development of stable and flexible tools. The methods are illustrated with sequence data in gene ANGPTL4 from the Dallas Heart Study. The performance of the proposed procedures is further assessed via simulation studies. The methods are implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).

摘要

复杂疾病和特征可能受到许多常见和罕见的遗传变异和环境因素的影响。检测疾病易感性变异是一项具有挑战性的任务,特别是当它们的频率较低且/或它们的影响较小或中等时。我们在这里提出了一个全面的层次广义线性模型框架,用于同时分析多组罕见和常见变异以及相关协变量。所提出的层次广义线性模型为每组变异引入了一个组效应和一个遗传评分(即遗传变异主效应预测因子的线性组合),它们共同估计组效应和遗传评分的权重。该框架包括各种以前的方法作为特例,并且可以有效地处理一组中的风险和保护变异,并且可以同时估计多个变异及其相对重要性的累积贡献。我们的计算策略基于将统计软件 R 中用于拟合广义线性模型的标准过程扩展到所提出的层次模型,从而开发出稳定且灵活的工具。该方法使用达拉斯心脏研究中基因 ANGPTL4 的序列数据进行说明。通过模拟研究进一步评估了所提出的程序的性能。该方法在一个免费的 R 包 BhGLM(http://www.ssg.uab.edu/bhglm/)中实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2354/3228815/653fa16d19b5/pgen.1002382.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验