Suppr超能文献

一种将基因表达、突变与临床数据相结合的两阶段方法可改善骨髓增生异常综合征和卵巢癌的生存预测。

A two-stage approach for combining gene expression and mutation with clinical data improves survival prediction in myelodysplastic syndromes and ovarian cancer.

作者信息

Li Yan, Zhang Xinyan, Akinyemiju Tomi, Ojesina Akinyemi I, Szychowski Jeff M, Liu Nianjun, Xu Bo, Yi Nengjun

机构信息

Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.

出版信息

J Bioinform Genom. 2016 Sep;1(1). doi: 10.18454/jbg.2016.1.1.2. Epub 2016 Sep 15.

Abstract

MOTIVATION

Many traditional clinical prognostic factors have been known for cancer for years, but usually provide poor survival prediction. Genomic information is more easily available now which offers opportunities to build more accurate prognostic models. The challenge is how to integrate them to improve survival prediction. The common approach of jointly analyzing all type of covariates directly in one single model may not improve the prediction due to increased model complexity and cannot be easily applied to different datasets.

RESULTS

We proposed a two-stage procedure to better combine different sources of information for survival prediction, and applied the two-stage procedure in two cancer datasets: myelodysplastic syndromes (MDS) and ovarian cancer. Our analysis suggests that the prediction performance of different data types are very different, and combining clinical, gene expression and mutation data using the two-stage procedure improves survival prediction in terms of improved concordance index and reduced prediction error.

AVAILABILITY AND IMPLEMENTATION

The two-stage procedure can be implemented in BhGLM package which is freely available at http://www.ssg.uab.edu/bhglm/.

CONTACT

nyi@uab.edu.

摘要

动机

多年来,许多传统的临床预后因素已为人所知,但通常对癌症生存的预测效果不佳。现在基因组信息更容易获取,这为构建更准确的预后模型提供了机会。挑战在于如何整合这些信息以改善生存预测。在一个单一模型中直接联合分析所有类型协变量的常见方法,可能由于模型复杂性增加而无法改善预测,并且不易应用于不同的数据集。

结果

我们提出了一种两阶段程序,以更好地结合不同来源的信息进行生存预测,并将该两阶段程序应用于两个癌症数据集:骨髓增生异常综合征(MDS)和卵巢癌。我们的分析表明,不同数据类型的预测性能差异很大,使用两阶段程序结合临床、基因表达和突变数据,在提高一致性指数和降低预测误差方面改善了生存预测。

可用性与实现

两阶段程序可在BhGLM软件包中实现,该软件包可从http://www.ssg.uab.edu/bhglm/免费获取。

联系方式

nyi@uab.edu

相似文献

2
The spike-and-slab lasso Cox model for survival prediction and associated genes detection.
Bioinformatics. 2017 Sep 15;33(18):2799-2807. doi: 10.1093/bioinformatics/btx300.
4
The Spike-and-Slab Lasso Generalized Linear Models for Prediction and Associated Genes Detection.
Genetics. 2017 Jan;205(1):77-88. doi: 10.1534/genetics.116.192195. Epub 2016 Oct 31.
5
Combining gene variants with clinical characteristics improves outcome prediction in Chinese patients with myelodysplastic syndromes.
Leuk Lymphoma. 2020 Apr;61(4):919-926. doi: 10.1080/10428194.2019.1702177. Epub 2019 Dec 16.
6
Negative binomial mixed models for analyzing microbiome count data.
BMC Bioinformatics. 2017 Jan 3;18(1):4. doi: 10.1186/s12859-016-1441-7.
7
9
Pathway-Structured Predictive Model for Cancer Survival Prediction: A Two-Stage Approach.
Genetics. 2017 Jan;205(1):89-100. doi: 10.1534/genetics.116.189191. Epub 2016 Nov 9.
10
Time to recurrence and survival in serous ovarian tumors predicted from integrated genomic profiles.
PLoS One. 2011;6(11):e24709. doi: 10.1371/journal.pone.0024709. Epub 2011 Nov 3.

本文引用的文献

1
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
J Stat Softw. 2011 Mar;39(5):1-13. doi: 10.18637/jss.v039.i05.
2
CD93 Marks a Non-Quiescent Human Leukemia Stem Cell Population and Is Required for Development of MLL-Rearranged Acute Myeloid Leukemia.
Cell Stem Cell. 2015 Oct 1;17(4):412-21. doi: 10.1016/j.stem.2015.08.008. Epub 2015 Sep 18.
3
α5β1 integrin recycling promotes Arp2/3-independent cancer cell invasion via the formin FHOD3.
J Cell Biol. 2015 Sep 14;210(6):1013-31. doi: 10.1083/jcb.201502040.
5
Assessing the clinical utility of cancer genomic and proteomic data across tumor types.
Nat Biotechnol. 2014 Jul;32(7):644-52. doi: 10.1038/nbt.2940. Epub 2014 Jun 22.
6
Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples.
J Natl Cancer Inst. 2014 Apr 3;106(5):dju048. doi: 10.1093/jnci/dju048.
7
Risk stratification in myelodysplastic syndromes: is there a role for gene expression profiling?
Expert Rev Hematol. 2014 Apr;7(2):191-4. doi: 10.1586/17474086.2014.891437. Epub 2014 Feb 24.
8
Clinical and biological implications of driver mutations in myelodysplastic syndromes.
Blood. 2013 Nov 21;122(22):3616-27; quiz 3699. doi: 10.1182/blood-2013-08-518886. Epub 2013 Sep 12.
9
RCP-driven α5β1 recycling suppresses Rac and promotes RhoA activity via the RacGAP1-IQGAP1 complex.
J Cell Biol. 2013 Sep 16;202(6):917-35. doi: 10.1083/jcb.201302041. Epub 2013 Sep 9.
10
Hierarchical shrinkage priors and model fitting for high-dimensional generalized linear models.
Stat Appl Genet Mol Biol. 2012 Nov 26;11(6):/j/sagmb.2012.11.issue-6/1544-6115.1803/1544-6115.1803.xml. doi: 10.1515/1544-6115.1803.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验