Suppr超能文献

不确定性感知牵引力显微镜术。

Uncertainty-aware traction force microscopy.

作者信息

Kandasamy Adithan, Yeh Yi-Ting, Serrano Ricardo, Mercola Mark, Del Alamo Juan C

机构信息

Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America.

Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America.

出版信息

PLoS Comput Biol. 2025 Jun 12;21(6):e1013079. doi: 10.1371/journal.pcbi.1013079. eCollection 2025 Jun.

Abstract

Traction Force Microscopy (TFM) is a versatile tool to quantify cell-exerted forces by imaging and tracking fiduciary markers embedded in elastic substrates. The computations involved in TFM are often ill-conditioned, and data smoothing or regularization is required to avoid overfitting the noise in the tracked displacements. Most TFM calculations depend critically on the heuristic selection of regularization (hyper-) parameters affecting the balance between overfitting and smoothing. However, TFM methods rarely estimate or account for measurement errors in substrate deformation to adjust the regularization level accordingly. Moreover, there is a lack of tools for uncertainty quantification (UQ) to understand how these errors propagate to the recovered traction stresses. These limitations make it difficult to interpret the TFM readouts and hinder comparing different experiments. This manuscript presents an uncertainty-aware TFM technique that estimates the variability in the magnitude and direction of the traction stress vector recovered at each point in space and time of each experiment. In this technique, a non-parametric bootstrap method perturbs the cross-correlation functional of Particle Image Velocimetry (PIV) to assess the uncertainty of the measured deformation. This information is passed on to a hierarchical Bayesian TFM framework with spatially adaptive regularization that propagates the uncertainty to the traction stress readouts (TFM-UQ). We evaluate TFM-UQ using synthetic datasets with prescribed image quality variations and demonstrate its application to experimental datasets. These studies show that TFM-UQ bypasses the need for subjective regularization parameter selection and locally adapts smoothing, outperforming traditional regularization methods. They also illustrate how uncertainty-aware TFM tools can be used to objectively choose key image analysis parameters like PIV window size. We anticipate that these tools will allow for decoupling biological heterogeneity from measurement variability and facilitate automating the analysis of large datasets by parameter-free, input data-based regularization.

摘要

牵引力显微镜(TFM)是一种多功能工具,可通过对嵌入弹性基质中的基准标记进行成像和跟踪来量化细胞施加的力。TFM所涉及的计算通常是病态的,需要进行数据平滑或正则化以避免过度拟合跟踪位移中的噪声。大多数TFM计算严重依赖于正则化(超)参数的启发式选择,这些参数会影响过度拟合和平滑之间的平衡。然而,TFM方法很少估计或考虑基质变形中的测量误差,以便相应地调整正则化水平。此外,缺乏用于不确定性量化(UQ)的工具来了解这些误差如何传播到恢复的牵引应力。这些限制使得难以解释TFM读数,并阻碍了不同实验之间的比较。本手稿提出了一种不确定性感知TFM技术,该技术可估计在每个实验的空间和时间的每个点处恢复的牵引应力矢量的大小和方向的变异性。在该技术中,一种非参数自助法会扰动粒子图像测速(PIV)的互相关函数,以评估测量变形的不确定性。此信息被传递到具有空间自适应正则化的分层贝叶斯TFM框架,该框架将不确定性传播到牵引应力读数(TFM-UQ)。我们使用具有规定图像质量变化的合成数据集评估TFM-UQ,并展示其在实验数据集上的应用。这些研究表明,TFM-UQ无需主观选择正则化参数,并能局部适应平滑,优于传统的正则化方法。它们还说明了如何使用不确定性感知TFM工具来客观地选择关键图像分析参数,如PIV窗口大小。我们预计,这些工具将允许将生物异质性与测量变异性解耦,并通过无参数、基于输入数据的正则化促进大型数据集分析的自动化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad3b/12251289/e47e49b83b6d/pcbi.1013079.g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验