Suppr超能文献

基于正例和未标记示例的基因调控网络的监督推理。

Supervised inference of gene regulatory networks from positive and unlabeled examples.

作者信息

Mordelet Fantine, Vert Jean-Philippe

机构信息

Department of Computer Science, Duke University, Durham, NC, USA.

出版信息

Methods Mol Biol. 2013;939:47-58. doi: 10.1007/978-1-62703-107-3_5.

Abstract

Elucidating the structure of gene regulatory networks (GRN), i.e., identifying which genes are under control of which transcription factors, is an important challenge to gain insight on a cell's working mechanisms. We present SIRENE, a method to estimate a GRN from a collection of expression data. Contrary to most existing methods for GRN inference, SIRENE requires as input a list of known regulations, in addition to expression data, and implements a supervised machine-learning approach based on learning from positive and unlabeled examples to account for the lack of negative examples.

摘要

阐明基因调控网络(GRN)的结构,即确定哪些基因受哪些转录因子的控制,是深入了解细胞工作机制的一项重要挑战。我们提出了SIRENE,一种从表达数据集中估计基因调控网络的方法。与大多数现有的基因调控网络推断方法不同,SIRENE除了需要表达数据作为输入外,还需要一份已知调控的列表,并基于从正例和未标记示例中学习来实现一种监督式机器学习方法,以解决负例缺失的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验