Suppr超能文献

基于“虚拟双能量”射线摄影术的肺结节计算机检测。

Computerized detection of lung nodules by means of "virtual dual-energy" radiography.

机构信息

University of Shanghai for Science and Technology, Shanghai 200093, China.

出版信息

IEEE Trans Biomed Eng. 2013 Feb;60(2):369-78. doi: 10.1109/TBME.2012.2226583. Epub 2012 Nov 15.

Abstract

Major challenges in current computer-aided detection (CADe) schemes for nodule detection in chest radiographs (CXRs) are to detect nodules that overlap with ribs and/or clavicles and to reduce the frequent false positives (FPs) caused by ribs. Detection of such nodules by a CADe scheme is very important, because radiologists are likely to miss such subtle nodules. Our purpose in this study was to develop a CADe scheme with improved sensitivity and specificity by use of "virtual dual-energy" (VDE) CXRs where ribs and clavicles are suppressed with massive-training artificial neural networks (MTANNs). To reduce rib-induced FPs and detect nodules overlapping with ribs, we incorporated the VDE technology in our CADe scheme. The VDE technology suppressed rib and clavicle opacities in CXRs while maintaining soft-tissue opacity by use of the MTANN technique that had been trained with real dual-energy imaging. Our scheme detected nodule candidates on VDE images by use of a morphologic filtering technique. Sixty morphologic and gray-level-based features were extracted from each candidate from both original and VDE CXRs. A nonlinear support vector classifier was employed for classification of the nodule candidates. A publicly available database containing 140 nodules in 140 CXRs and 93 normal CXRs was used for testing our CADe scheme. All nodules were confirmed by computed tomography examinations, and the average size of the nodules was 17.8 mm. Thirty percent (42/140) of the nodules were rated "extremely subtle" or "very subtle" by a radiologist. The original scheme without VDE technology achieved a sensitivity of 78.6% (110/140) with 5 (1165/233) FPs per image. By use of the VDE technology, more nodules overlapping with ribs or clavicles were detected and the sensitivity was improved substantially to 85.0% (119/140) at the same FP rate in a leave-one-out cross-validation test, whereas the FP rate was reduced to 2.5 (583/233) per image at the same sensitivity level as the original CADe scheme obtained (Difference between the specificities of the original and the VDE-based CADe schemes was statistically significant). In particular, the sensitivity of our VDE-based CADe scheme for subtle nodules (66.7% = 28/42) was statistically significantly higher than that of the original CADe scheme (57.1% = 24/42). Therefore, by use of VDE technology, the sensitivity and specificity of our CADe scheme for detection of nodules, especially subtle nodules, in CXRs were improved substantially.

摘要

当前胸部 X 射线(CXR)中结节检测的计算机辅助检测(CADe)方案主要面临两大挑战:一是检测与肋骨和/或锁骨重叠的结节;二是减少由肋骨引起的频繁假阳性(FP)。CADe 方案对这种结节的检测非常重要,因为放射科医生很可能会错过这些细微的结节。本研究的目的是通过使用大量训练人工神经网络(MTANN)抑制肋骨和锁骨的“虚拟双能”(VDE)CXR 来开发一种具有更高灵敏度和特异性的 CADe 方案。为了减少肋骨引起的 FP 和检测与肋骨重叠的结节,我们在 CADe 方案中加入了 VDE 技术。VDE 技术通过使用经过真实双能成像训练的 MTANN 技术,在 CXR 中抑制肋骨和锁骨的不透明度,同时保持软组织的不透明度。我们的方案通过形态滤波技术在 VDE 图像上检测结节候选物。从原始和 VDE CXR 中的每个候选物中提取 60 个形态学和基于灰度的特征。非线性支持向量分类器用于分类结节候选物。一个公共数据库包含 140 个 CXR 中的 140 个结节和 93 个正常 CXR,用于测试我们的 CADe 方案。所有结节均通过计算机断层扫描检查证实,结节平均大小为 17.8 毫米。30%(42/140)的结节被放射科医生评为“非常细微”或“非常细微”。没有 VDE 技术的原始方案的灵敏度为 78.6%(110/140),每个图像有 5 个(1165/233)FP。通过使用 VDE 技术,可以检测到更多与肋骨或锁骨重叠的结节,并且在同一张图像中 FP 率为 5(583/233)的情况下,灵敏度大大提高到 85.0%(119/140),而原始 CADe 方案的 FP 率降低到 2.5(583/233),在灵敏度水平上与原始 CADe 方案相同(原始和基于 VDE 的 CADe 方案之间的特异性差异具有统计学意义)。特别是,我们基于 VDE 的 CADe 方案对细微结节(66.7%=28/42)的灵敏度明显高于原始 CADe 方案(57.1%=24/42)。因此,通过使用 VDE 技术,我们的 CADe 方案在 CXR 中检测结节(尤其是细微结节)的灵敏度和特异性得到了显著提高。

相似文献

1
Computerized detection of lung nodules by means of "virtual dual-energy" radiography.
IEEE Trans Biomed Eng. 2013 Feb;60(2):369-78. doi: 10.1109/TBME.2012.2226583. Epub 2012 Nov 15.
5
A parameterized logarithmic image processing method with Laplacian of Gaussian filtering for lung nodule enhancement in chest radiographs.
Med Biol Eng Comput. 2016 Nov;54(11):1793-1806. doi: 10.1007/s11517-016-1469-x. Epub 2016 Mar 25.
8
JOURNAL CLUB: Computer-Aided Detection of Lung Nodules on CT With a Computerized Pulmonary Vessel Suppressed Function.
AJR Am J Roentgenol. 2018 Mar;210(3):480-488. doi: 10.2214/AJR.17.18718. Epub 2018 Jan 16.
9
Pulmonary nodule detection on chest radiographs using balanced convolutional neural network and classic candidate detection.
Artif Intell Med. 2020 Jul;107:101881. doi: 10.1016/j.artmed.2020.101881. Epub 2020 May 22.
10
A supervised 'lesion-enhancement' filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD).
Phys Med Biol. 2009 Sep 21;54(18):S31-45. doi: 10.1088/0031-9155/54/18/S03. Epub 2009 Aug 18.

引用本文的文献

1
FocusCovid: automated COVID-19 detection using deep learning with chest X-ray images.
Evol Syst (Berl). 2022;13(4):519-533. doi: 10.1007/s12530-021-09385-2. Epub 2021 May 9.
2
Computer-assisted diagnosis for an early identification of lung cancer in chest X rays.
Sci Rep. 2023 May 12;13(1):7720. doi: 10.1038/s41598-023-34835-z.
3
Segmentation and classification on chest radiography: a systematic survey.
Vis Comput. 2023;39(3):875-913. doi: 10.1007/s00371-021-02352-7. Epub 2022 Jan 8.
4
Lung Cancer Detection and Improving Accuracy Using Linear Subspace Image Classification Algorithm.
Interdiscip Sci. 2021 Dec;13(4):779-786. doi: 10.1007/s12539-021-00468-x. Epub 2021 Aug 5.
5
The detection of lung cancer using massive artificial neural network based on soft tissue technique.
BMC Med Inform Decis Mak. 2020 Oct 31;20(1):282. doi: 10.1186/s12911-020-01220-z.
6
Soft Tissue/Bone Decomposition of Conventional Chest Radiographs Using Nonparametric Image Priors.
Appl Bionics Biomech. 2019 Jun 24;2019:9806464. doi: 10.1155/2019/9806464. eCollection 2019.
8
Overview of deep learning in medical imaging.
Radiol Phys Technol. 2017 Sep;10(3):257-273. doi: 10.1007/s12194-017-0406-5. Epub 2017 Jul 8.
9
A parameterized logarithmic image processing method with Laplacian of Gaussian filtering for lung nodule enhancement in chest radiographs.
Med Biol Eng Comput. 2016 Nov;54(11):1793-1806. doi: 10.1007/s11517-016-1469-x. Epub 2016 Mar 25.

本文引用的文献

2
Improved detection of small lung cancers with dual-energy subtraction chest radiography.
AJR Am J Roentgenol. 2008 Apr;190(4):886-91. doi: 10.2214/AJR.07.2875.
3
Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs.
Med Image Anal. 2008 Jun;12(3):240-58. doi: 10.1016/j.media.2007.10.004. Epub 2007 Oct 25.
5
Filter learning: application to suppression of bony structures from chest radiographs.
Med Image Anal. 2006 Dec;10(6):826-40. doi: 10.1016/j.media.2006.06.002. Epub 2006 Jul 21.
7
A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database.
Med Image Anal. 2006 Apr;10(2):247-58. doi: 10.1016/j.media.2005.09.003. Epub 2005 Nov 15.
10
Neural networks for computer-aided diagnosis: detection of lung nodules in chest radiograms.
IEEE Trans Inf Technol Biomed. 2003 Dec;7(4):344-57. doi: 10.1109/titb.2003.821313.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验