Suppr超能文献

利用基于软组织技术的大规模人工神经网络检测肺癌。

The detection of lung cancer using massive artificial neural network based on soft tissue technique.

机构信息

Department of Electronics and Communication Engineering (ECE), Kamaraj college of engineering and technology (Autonomous), Virudhunagar, India.

出版信息

BMC Med Inform Decis Mak. 2020 Oct 31;20(1):282. doi: 10.1186/s12911-020-01220-z.

Abstract

BACKGROUND

A proposed computer aided detection (CAD) scheme faces major issues during subtle nodule recognition. However, radiologists have not noticed subtle nodules in beginning stage of lung cancer while a proposed CAD scheme recognizes non subtle nodules using x-ray images.

METHOD

Such an issue has been resolved by creating MANN (Massive Artificial Neural Network) based soft tissue technique from the lung segmented x-ray image. A soft tissue image recognizes nodule candidate for feature extortion and classification. X-ray images are downloaded using Japanese society of radiological technology (JSRT) image set. This image set includes 233 images (140 nodule x-ray images and 93 normal x-ray images). A mean size for a nodule is 17.8 mm and it is validated with computed tomography (CT) image. Thirty percent (42/140) abnormal represents subtle nodules and it is split into five stages (tremendously subtle, very subtle, subtle, observable, relatively observable) by radiologists.

RESULT

A proposed CAD scheme without soft tissue technique attained 66.42% (93/140) sensitivity and 66.76% accuracy having 2.5 false positives per image. Utilizing soft tissue technique, many nodules superimposed by ribs as well as clavicles have identified (sensitivity is 72.85% (102/140) and accuracy is 72.96% at one false positive rate).

CONCLUSION

In particular, a proposed CAD system determine sensitivity and accuracy in support of subtle nodules (sensitivity is 14/42 = 33.33% and accuracy is 33.66%) is statistically higher than CAD (sensitivity is 13/42 = 30.95% and accuracy is 30.97%) scheme without soft tissue technique. A proposed CAD scheme attained tremendously minimum false positive rate and it is a promising technique in support of cancerous recognition due to improved sensitivity and specificity.

摘要

背景

在识别细微结节时,一种提出的计算机辅助检测 (CAD) 方案面临重大问题。然而,放射科医生在肺癌早期阶段并未注意到细微结节,而 CAD 方案使用 X 射线图像识别非细微结节。

方法

通过从肺部分割的 X 射线图像中创建基于大规模人工神经网络 (MANN) 的软组织技术,解决了这一问题。软组织图像识别结节候选特征提取和分类。使用日本放射技术学会 (JSRT) 图像集下载 X 射线图像。该图像集包括 233 张图像(140 张结节 X 射线图像和 93 张正常 X 射线图像)。结节的平均大小为 17.8mm,并通过计算机断层扫描 (CT) 图像进行验证。30%(42/140)异常代表细微结节,由放射科医生分为五个阶段(非常细微、非常细微、细微、可观察、相对可观察)。

结果

没有软组织技术的 CAD 方案的敏感性为 66.42%(93/140),准确性为 66.76%,每张图像有 2.5 个假阳性。利用软组织技术,已经识别出许多肋骨和锁骨叠加的结节(敏感性为 72.85%(102/140),假阳性率为 1 时准确性为 72.96%)。

结论

特别是,提出的 CAD 系统支持细微结节的敏感性和准确性(敏感性为 14/42=33.33%,准确性为 33.66%)在统计学上高于没有软组织技术的 CAD(敏感性为 13/42=30.95%,准确性为 30.97%)方案。提出的 CAD 方案实现了极低的假阳性率,由于敏感性和特异性的提高,它是一种支持癌症识别的有前途的技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25eb/7602294/596a519d8ff9/12911_2020_1220_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验