Suppr超能文献

通过大规模训练人工神经网络减少胸部X光片中结节检测的计算机辅助诊断方案中的假阳性。

False-positive reduction in computer-aided diagnostic scheme for detecting nodules in chest radiographs by means of massive training artificial neural network.

作者信息

Suzuki Kenji, Shiraishi Junji, Abe Hiroyuki, MacMahon Heber, Doi Kunio

机构信息

Department of Radiology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.

出版信息

Acad Radiol. 2005 Feb;12(2):191-201. doi: 10.1016/j.acra.2004.11.017.

Abstract

RATIONALE AND OBJECTIVE

We developed a technique that uses a multiple massive-training artificial neural network (multi-MTANN) to reduce the number of false-positive results in a computer-aided diagnostic (CAD) scheme for detecting nodules in chest radiographs.

MATERIALS AND METHODS

Our database consisted of 91 solitary pulmonary nodules, including 64 malignant nodules and 27 benign nodules, in 91 chest radiographs. With our current CAD scheme based on a difference-image technique and linear discriminant analysis, we achieved a sensitivity of 82.4%, with 4.5 false positives per image. We developed the multi-MTANN for further reduction of the false positive rate. An MTANN is a highly nonlinear filter that can be trained with input images and corresponding teaching images. To reduce the effects of background levels in chest radiographs, we applied a background-trend-correction technique, followed by contrast normalization, to the input images for the MTANN. For enhancement of nodules, the teaching image was designed to contain the distribution for a "likelihood of being a nodule." Six MTANNs in the multi-MTANN were trained by using typical nodules and six different types of non-nodules (false positives).

RESULTS

Use of the trained multi-MTANN eliminated 68.3% of false-positive findings with a reduction of one true-positive result. The false-positive rate of our original CAD scheme was improved from 4.5 to 1.4 false positives per image, at an overall sensitivity of 81.3%.

CONCLUSION

Use of a multi-MTANN substantially reduced the false-positive rate of our CAD scheme for lung nodule detection on chest radiographs, while maintaining a level of sensitivity.

摘要

原理与目的

我们开发了一种技术,该技术使用多重大规模训练人工神经网络(multi-MTANN)来减少胸部X光片结节检测的计算机辅助诊断(CAD)方案中的假阳性结果数量。

材料与方法

我们的数据库由91张胸部X光片中的91个孤立性肺结节组成,包括64个恶性结节和27个良性结节。基于差分图像技术和线性判别分析的当前CAD方案,我们实现了82.4%的灵敏度,每张图像有4.5个假阳性。我们开发了multi-MTANN以进一步降低假阳性率。MTANN是一种高度非线性滤波器,可以使用输入图像和相应的示教图像进行训练。为了减少胸部X光片中背景水平的影响,我们对MTANN的输入图像应用了背景趋势校正技术,然后进行对比度归一化。为了增强结节,示教图像设计为包含“成为结节的可能性”的分布。multi-MTANN中的六个MTANN通过使用典型结节和六种不同类型的非结节(假阳性)进行训练。

结果

使用经过训练的multi-MTANN消除了68.3%的假阳性发现,但减少了一个真阳性结果。我们原始CAD方案的假阳性率从每张图像4.5个提高到1.4个,总体灵敏度为81.3%。

结论

使用multi-MTANN可大幅降低我们用于胸部X光片肺结节检测的CAD方案的假阳性率,同时保持一定水平的灵敏度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验