Suppr超能文献

肺癌检测与线性子空间图像分类算法的准确率提升。

Lung Cancer Detection and Improving Accuracy Using Linear Subspace Image Classification Algorithm.

机构信息

Department of Electronics and Communication Engineering, Government College of Engineering, Salem, Tamilnadu, India.

Malla Reddy Engineering College for Women (Autonomous), Hyderabad, 500100, India.

出版信息

Interdiscip Sci. 2021 Dec;13(4):779-786. doi: 10.1007/s12539-021-00468-x. Epub 2021 Aug 5.

Abstract

The ability to identify lung cancer at an early stage is critical, because it can help patients live longer. However, predicting the affected area while diagnosing cancer is a huge challenge. An intelligent computer-aided diagnostic system can be utilized to detect and diagnose lung cancer by detecting the damaged region. The suggested Linear Subspace Image Classification Algorithm (LSICA) approach classifies images in a linear subspace. This methodology is used to accurately identify the damaged region, and it involves three steps: image enhancement, segmentation, and classification. The spatial image clustering technique is used to quickly segment and identify the impacted area in the image. LSICA is utilized to determine the accuracy value of the affected region for classification purposes. Therefore, a lung cancer detection system with classification-dependent image processing is used for lung cancer CT imaging. Therefore, a new method to overcome these deficiencies of the process for detection using LSICA is proposed in this work on lung cancer. MATLAB has been used in all programs. A proposed system designed to easily identify the affected region with help of the classification technique to enhance and get more accurate results.

摘要

早期发现肺癌的能力至关重要,因为它可以帮助患者延长寿命。然而,在诊断癌症时预测受影响的区域是一个巨大的挑战。可以利用智能计算机辅助诊断系统通过检测受损区域来检测和诊断肺癌。所提出的线性子空间图像分类算法(LSICA)方法在线性子空间中对图像进行分类。这种方法用于准确识别受损区域,它涉及三个步骤:图像增强、分割和分类。空间图像聚类技术用于快速分割和识别图像中的受影响区域。LSICA 用于确定受影响区域的准确度值以进行分类。因此,使用分类相关图像处理的肺癌检测系统用于肺癌 CT 成像。因此,这项工作提出了一种使用 LSICA 克服该过程检测缺陷的新方法。所有程序都使用了 MATLAB。设计了一个建议系统,旨在借助分类技术轻松识别受影响区域,以增强并获得更准确的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验